Search results

1 – 10 of over 25000
Article
Publication date: 1 January 1991

LIEN‐WEN CHEN and DER‐MING KU

The Euler beam theory is used to study the dynamic stability of a composite material slider‐crank mechanism with an elastic connecting rod. The Ritz finite element procedure is…

Abstract

The Euler beam theory is used to study the dynamic stability of a composite material slider‐crank mechanism with an elastic connecting rod. The Ritz finite element procedure is applied to derive the governing equations of motion of the mechanism. Based on the assumption that the slider‐crank mechanism is subjected to a sinusoidal input torque and the operation condition is at a steady dynamic state, the governing equations represent a system of second order differential equations with periodic coefficients of the Mathieu‐Hill type. Making use of the Bolotin method, the boundaries between stable and unstable solutions of the elastic connecting rod are constructed. The advantages of using composite materials in the design of mechanisms are demonstrated.

Details

Engineering Computations, vol. 8 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 March 2018

Shu-hao Deng, Yu Wang and Xi Yang

The purpose of this paper is to improve the conductivity and processability of polyaniline (PANI).

Abstract

Purpose

The purpose of this paper is to improve the conductivity and processability of polyaniline (PANI).

Design/methodology/approach

The study opted for synthesis of the conductive PANI/polyvinyl alcohol (PVA) composite film, co-doped with 5-sulphosalicylic acid and sulphuric acid. Using an electrochemical method, a small amount of silver (Ag) was electrodeposited on the film. The PVA/PANI and PVA/PANI/Ag composite films were characterised by scanning electron microscope, X-ray diffraction and infrared. The composite deposition mechanism of the composite film was investigated by cyclic voltammetry for the first time.

Findings

The conductivity of the optimum PVA/PANI composite film reached 21.2 S · cm−1.Then, a small amount of Ag was deposited on the PVA/PANI film, and the conductivity significantly increased by 1250 S · cm−1. Through appropriate degree of stretching, the conductivity of the films was enhanced. The results indicate that uniform PVA/PANI fibres and dendritic Ag can combine to form complete three-dimensional conductive networks that exhibit better conductivity and mechanical properties. The cyclic voltammetry curves reveal that the dedoping potential of PANI was more negative than the reduction potential of Ag. Therefore, the procedure for the deposition of Ag on the PANI/PVA composite film cannot decrease the conductivity.

Practical implications

This paper for the first time described and revealed the effective and practical synthesis approach and composite mechanism to prepare multi-types metal-conductive polymer composites and improve the conductivity of a conductive polymer with a less expense and one-step electrochemical method.

Originality/value

This paper first explored galvanostatic oxidation to synthesise a PANI composite film to resolve the processability and conductivity of PANI by co-doped with mixed acids and deposited Ag on film. Furthermore, for the first time, the composite mechanism of metal and conductive polymer was studied.

Details

Pigment & Resin Technology, vol. 47 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 January 2017

Chuncheng Yang, Xiaoyong Tian, Tengfei Liu, Yi Cao and Dichen Li

Continuous fiber reinforced thermoplastic composites (CFRTPCs) are becoming more significant in industrial applications but are limited by the high cost of molds, the…

8281

Abstract

Purpose

Continuous fiber reinforced thermoplastic composites (CFRTPCs) are becoming more significant in industrial applications but are limited by the high cost of molds, the manufacturing boundedness of complex constructions and the inability of special fiber alignment. The purpose of this paper is to put forward a novel three-dimensional (3D) printing process for CFRTPCs to realize the low-cost rapid fabrication of complicated composite components.

Design/methodology/approach

For this purpose, the mechanism of the proposed process, which consists of the thermoplastic polymer melting, the continuous fiber hot-dipping and the impregnated composites extruding, was investigated. A 3D printing equipment for CFRTPCs with a novel composite extrusion head was developed, and some composite samples have been fabricated for several mechanical tests. Moreover, the interface performance was clarified with scanning electron microscopy images.

Findings

The results showed that the flexural strength and the tensile strength of these 10 Wt.% continuous carbon fiber (CCF)/acrylonitrile-butadiene-styrene (ABS) specimens were improved to 127 and 147 MPa, respectively, far greater than the one of ABS parts and close to the one of CCF/ABS (injection molding) with the same fiber content. Moreover, these test results also exposed the very low interlaminar shear strength (only 2.81 MPa) and the inferior interface performance. These results were explained by the weak meso/micro/nano scale interfaces in the 3D printed composite parts.

Originality/value

The 3D printing process for CFRTPCs with its controlled capabilities for the orientation and distribution of fiber has great potential for manufacturing of load-bearing composite parts in the industrial circle.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 January 2022

Juan Wang, Xiongrong Huang, Wei Wang, Haosheng Han, Hongyu Duan, Senlong Yu and Meifang Zhu

The purpose of this study is to determine the tribological behavior and wear mechanism of a polytetrafluoroethylene (PTFE)/polyester (PET) fabric composite for application as a…

Abstract

Purpose

The purpose of this study is to determine the tribological behavior and wear mechanism of a polytetrafluoroethylene (PTFE)/polyester (PET) fabric composite for application as a self-lubricating liner suitable for high-speed and low-load friction conditions.

Design/methodology/approach

The effects of different loads and sliding speeds on the friction coefficients and wear characteristics of the composite were studied using reciprocating friction tests. Scanning electron microscopy, extended depth-of-field microscopy, and energy-dispersive X-ray spectrometry was used to analyze the worn surface morphology, wear depth and elemental content of the lubrication films, respectively.

Findings

The friction coefficient curves of the composites presented a long-term steady wear stage under different sliding conditions. With increasing sliding speed, the friction coefficient and wear depth of the composite slowly increased. The film-forming mechanism of the composite revealed that the PTFE/PET ply yarn on the composite surface formed complete PTFE lubrication films at the initial sliding stage.

Originality/value

The PTFE/PET fabric composite maintained good friction stability and high-speed adaptability, which demonstrates that the composite has broad application prospects as a highly reliable self-lubricating bearing liner with a long lifespan.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Dayang Nor Fatin Mahmud, Mohd Fadzli Bin Abdollah, Nor Azmmi Bin Masripan, Noreffendy Tamaldin and Hilmi Amiruddin

The purpose of this paper is to investigate the mechanisms of frictional wear stability of an activated carbon composite derived from palm kernel using phase transformation study.

Abstract

Purpose

The purpose of this paper is to investigate the mechanisms of frictional wear stability of an activated carbon composite derived from palm kernel using phase transformation study.

Design/methodology/approach

The unlubricated sliding test was executed using a ball-on-disc tribometer at different loads with a constant speed, sliding distance and temperature.

Findings

Results of this paper suggest that stability of friction and wear of the test materials are primarily due to the phase transformation of the composite surface layer.

Research limitations/implications

However, the effectiveness of the transfer layer as a medium for low friction and wear is only limited at certain applied loads.

Originality/value

This is the first study, to the authors’ knowledge, to find out the mechanisms of low frictional wear properties of an activated carbon composite derived from palm kernel using phase transformation study.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 August 2014

K. Somasundara Vinoth, R. Subramanian, S. Dharmalingam and B. Anandavel

The purpose of this research paper is to find the optimum parameters, namely, the sliding speed, applied load and percentage of silicon carbide particles (SiCp), under which…

Abstract

Purpose

The purpose of this research paper is to find the optimum parameters, namely, the sliding speed, applied load and percentage of silicon carbide particles (SiCp), under which AlSi10Mg/SiCp composites experience minimum wear.

Design/methodology/approach

Wear rate (WR) of AlSi10Mg, AlSi10Mg/10SiC and AlSi10Mg/20SiC was measured using pin-on-disk equipment according to ASTM G99 standards. Response surface method was used to design the experiments, model and analyze the tribological behaviour. Tests were conducted as per Box–Beheken design of experiments. The wear mechanisms were observed using scanning electron microscope. Genetic algorithm was used to find the optimum parameters for minimum WR.

Findings

Wear mechanisms underwent changes with variation in applied load, sliding speed and per cent SiCp. An optimum wear condition was obtained when the process parameters, namely, the sliding speed, applied load and percentage of SiCp, were at 4 m/s, 10 N and 20 per cent, respectively. Combined GA-RSM approach was successfully used to predict the minimum WR condition of AlSi10Mg/SiCp composites with an accuracy of 94 per cent.

Originality/value

The tribological behaviour of AlSi10Mg/SiCp composites has been investigated in detail. A statistical WR model is proposed. This paper provides an optimum condition to design the tribo contact between steel and AlSi10Mg/SiCp composites.

Details

Industrial Lubrication and Tribology, vol. 66 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 December 2023

Akash Gupta and Manjeet Singh

This study aims to evaluate the failure behavior of glass fiber-reinforced epoxy (GFRE) laminate subjected to cyclic loading conditions. It involves experimental investigation and…

29

Abstract

Purpose

This study aims to evaluate the failure behavior of glass fiber-reinforced epoxy (GFRE) laminate subjected to cyclic loading conditions. It involves experimental investigation and statistical analysis using Weibull distribution to characterize the failure behavior of the GFRE composite laminate.

Design/methodology/approach

Fatigue tests were conducted using a tension–tension loading scheme at a frequency of 2 Hz and a loading ratio (R) of 0.1. The tests were performed at five different stress levels, corresponding to 50%–90% of the ultimate tensile strength (UTS). Failure behavior was assessed through cyclic stress-strain hysteresis plots, dynamic modulus behavior and scanning electron microscopy (SEM) analysis of fracture surfaces.

Findings

The study identified common modes of failure, including fiber pullouts, fiber breakage and matrix cracking. At low stress levels, fiber breakage, matrix cracking and fiber pullouts occurred due to high shear stresses at the fiber–matrix interface. Conversely, at high stress levels, fiber breakage and matrix cracking predominated. Higher stress levels led to larger stress-strain hysteresis loops, indicating increased energy dissipation during cyclic loading. High stress levels were associated with a more significant decrease in stiffness over time, implying a shorter fatigue life, while lower stress levels resulted in a gradual decline in stiffness, leading to extended fatigue life.

Originality/value

This study makes a valuable contribution to understanding fatigue behavior under tension–tension loading conditions, coupled with an in-depth analysis of the failure mechanism in GFRE composite laminate at different stress levels. The fatigue behavior is scrutinized through stress-strain hysteresis plots and dynamic modulus versus normalized cycles plots. Furthermore, the characterization of the failure mechanism is enhanced by using SEM imaging of fractured specimens. The Weibull distribution approach is used to obtain a reliable estimate of fatigue life.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 March 2009

Abdul Maleque and Rezaul Karim

The purpose of this paper is to study the wear behavior of as‐cast (AC) and heat treated (HT) triple particle size (TPS) silicon carbide (SiC) reinforced aluminum alloy‐based…

Abstract

Purpose

The purpose of this paper is to study the wear behavior of as‐cast (AC) and heat treated (HT) triple particle size (TPS) silicon carbide (SiC) reinforced aluminum alloy‐based metal matrix composites (SiCp/Al‐MMC).

Design/methodology/approach

Al‐MMCs were prepared using 20 vol.% SiC reinforcement into aluminum metal matrix and developed using a stir casting process. Stir casting is a primary process of composite production whereby the reinforcement ingredient material is incorporated into the molten metal by stirring. The TPS composite consist of SiC of three different sizes viz., coarse, intermediate, and fine. The solution heat treatment was done on AC composite at 540°C for 4 h followed by precipitation treatment. The wear test was carried out using a pin‐on‐disc type tribo‐test machine under dry sliding condition. A mathematical analysis was also done for power factor values based on wear and friction results. The wear morphology of the damaged surface was also studied using optical microscope and scanning electron microscope (SEM) in this investigation.

Findings

The test results showed that HT composite exhibited better wear resistance properties compared to AC composite. It is anticipated that heat treatment could be an effective method of optimizing the wear resistance properties of the developed Al‐MMC material.

Practical implications

This paper provides a way to enhance the wear behavior of automotive tribo‐components such as brake rotor (disc and drum), brake pad, piston cylinder, etc.

Originality/value

This paper compares the wear behavior of AC and HT TPS reinforced Al‐MMC material under dry sliding condition.

Details

Industrial Lubrication and Tribology, vol. 61 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 August 2011

Anthony Abu, Verotiana Ramanitrarivo and Ian Burgess

A simple folding mechanism, which considers the contributions of internal unprotected beams and protected edge beams, has been proposed for isolated slab panels in fire…

Abstract

A simple folding mechanism, which considers the contributions of internal unprotected beams and protected edge beams, has been proposed for isolated slab panels in fire conditions. The current study extends the mechanism to include the reinforcement in the slab as well as continuity across the protected edge beams. Structural failure of the panel depends on the applied loads, the relative beam sizes, their locations within the building, their arrangement in the slab panel, the panel's location and the severity of fire exposure. These factors are considered in the development of a number of collapse mechanisms for verification so they may eventually serve as an additional check within the Bailey-BRE design method, to make it more robust for routine design of composite floors in fire. Comparisons are made with the finite element software Vulcan and other design acceptance criteria.

Details

Journal of Structural Fire Engineering, vol. 2 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 August 2016

Zujian Shen, Fei Geng, Xinxin Fan, Zhichen Shen and Haiyan Wang

This paper aims to investigate and prepare the composite polyurea greases with excellent thermal stability and tribological properties.

Abstract

Purpose

This paper aims to investigate and prepare the composite polyurea greases with excellent thermal stability and tribological properties.

Design/methodology/approach

In this paper, composite Ba-based (Ba, barium) tetra-polyurea lubricating greases were prepared with two different methods: mixing Ba-based gelatinizer and tetra-polyurea gelatinizer by a physical method; and introducing barium carboxylate into tetra-polyurea molecules by a chemical method. The properties of the products, such as heat stability, water resistance and friction performance, were analyzed with thermogravimetry, water-resistance test and four-ball friction test.

Findings

The results indicated that the products obtained by chemically introducing barium carboxylate into tetra-urea molecules showed better elevated temperature tribological properties, and the disadvantages of the polyurea greases with high temperature hardening were also obviously improved. The cone penetration rate at 180°C for 24 h is only 3 per cent. The friction coefficient can be decreased to 0.44 and the last non-seizure load value was increased from 560 N to 1,120 N without any other additives.

Originality/value

The research is significant because the prepared composite grease showed excellent performances, such as the outstanding thermal stability, water resistance and excellent extreme pressure and anti-wear properties, which may be widely applied in steel, metallurgy, bearings and other industrial fields.

Details

Industrial Lubrication and Tribology, vol. 68 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 25000