Search results

1 – 10 of 201
Article
Publication date: 25 October 2023

Lucia Regina and José Aguiomar Foggiatto

Breast cancer is the most diagnosed type of cancer in the world, and mastectomies to remove tumors are still common. An external breast prosthesis (EBP) can be used to minimize…

Abstract

Purpose

Breast cancer is the most diagnosed type of cancer in the world, and mastectomies to remove tumors are still common. An external breast prosthesis (EBP) can be used to minimize the asymmetry, due to the ablation. Some governments do not cover costs of that assistive technology, and women end up using socks and fabric pockets filled with seeds, to simulate the volume lost in the surgery. This study aims to offer to those women a decent solution, ergonomic, but still affordable.

Design/methodology/approach

The authors interviewed 20 mastectomized Brazilian women, listened to their relate and 3D scanned them, to give rise to personalized external lightweight breast prostheses. The authors used free software for computer-aided design and computer-aided manufacturing, and low-cost 3D printers. From the strategy of bespoke products, this study generalized the method, to conceive mass customized prostheses, in a compromise solution that reduces personalization, conserving the best features of design.

Findings

This study achieved a method to manufacture ergonomic, bespoke external breast prostheses, using low-cost technology. Previous literature made them using expensive scanners, software and printers.

Research limitations/implications

The authors validated this method during pandemic, which restricted the number of patients the authors could have access to. This impacted authors’ possibility to work on matching the color of the final product and real skin. The authors understood, though, that precision of color, in the final product, is challenging, because of the peculiar aspects of human skin.

Originality/value

Using the method the authors proposed, personalized external breast prostheses can be manufactured using low-cost resources, democratizing better quality of life for more breast cancer survivors.

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 April 2024

Fathima Sabrina Nazeer, Imriyas Kamardeen and Abid Hasan

Many buildings fail to meet user expectations, causing a performance gap. Pre-occupancy evaluation (PrOE) is believed to have the potential to close the gap. It enables designers…

Abstract

Purpose

Many buildings fail to meet user expectations, causing a performance gap. Pre-occupancy evaluation (PrOE) is believed to have the potential to close the gap. It enables designers to obtain end-user feedback in the design phase and improve the design for better performance. However, PrOE implementation faces challenges due to still maturing knowledgebase. This study aims to understand the state-of-the-art knowledge of PrOE, thereby identifying future research needs to advance the domain.

Design/methodology/approach

A systematic literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework was conducted. A thorough search in five databases and Google Scholar retrieved 90 articles, with 30 selected for systematic review after eliminating duplicates and irrelevant articles. Bibliometric analyses were performed using VOSviewer and Biblioshiny on the article metadata, and thematic analyses were conducted on their contents.

Findings

PrOE is a vehicle for engaging building end-users in the design phase to address the credibility gap caused by the discrepancies between the expected and actual performance of buildings. PrOE has gained limited applications in healthcare, residential, office and educational building design for two broad purposes: design management and marketing. Using virtual reality technologies for PrOE has demonstrated significant benefits. Yet, the PrOE domain needs to mature in multiple perspectives to serve its intended purpose effectively.

Originality/value

This study identifies four knowledge gaps for future research to advance the PrOE domain: (1) developing a holistic PrOE framework, integrating comprehensive performance evaluation criteria, useable at different stages of the design phase and multi-criteria decision algorithms, (2) developing a mixed reality tool, embodying the holistic PrOE framework, (3) formulating a PrOE framework for adaptive reuse of buildings and (4) managing uncertainties in user requirements during the lifecycle in PrOE decisions.

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 27 December 2021

Riddhi Thavi, Rujuta Jhaveri, Vaibhav Narwane, Bhaskar Gardas and Nima Jafari Navimipour

This paper aims to provide a literature review on the cloud-based platforms for the education sectors. The several aspects of cloud computing adoption in education…

Abstract

Purpose

This paper aims to provide a literature review on the cloud-based platforms for the education sectors. The several aspects of cloud computing adoption in education, remote/distance learning and the application of cloud-based design and manufacturing (CBDM) have been studied and theorised.

Design/methodology/approach

A four-step methodology was adopted to analyse and categorise the papers obtained through various search engines. Out of 429 research articles, 72 papers were shortlisted for the detailed analysis.

Findings

Many factors that influence cloud computing technology adoption in the education sector have been identified in this paper. The research findings on several research items have been tabulated and discussed. Based on the theoretical research done on cloud computing for education, cloud computing for remote/distance learning and CBDM, cloud computing could enhance the educational systems in mainly developing countries and improve the scope for remote/distance learning.

Research limitations/implications

This study is limited to papers published only in the past decade from 2011 to 2020. Besides, this review was unable to include journal articles published in different languages. Nevertheless, for the effective teaching and learning process, this paper could help understand the importance and improve the process of adopting cloud computing concepts in educational universities and platforms.

Originality/value

This study is a novel one as a research review constituting cloud computing applications in education and extended for remote/distance learning and CBDM, which have not been studied in the existing knowledge base.

Article
Publication date: 5 January 2024

Ah Lam Lee and Hyunsook Han

The main issue in the mass customization of apparel products is how to efficiently produce products of various sizes. A parametric pattern-making system is one of the notable ways…

Abstract

Purpose

The main issue in the mass customization of apparel products is how to efficiently produce products of various sizes. A parametric pattern-making system is one of the notable ways to rectify this issue, but there is a lack of information on the parametric design itself and its application to the apparel industry. This study compares and analyzes three types of parametric clothing pattern CAD (P-CAD) software currently in use to identify the characteristics of each, and suggest a basic guideline for efficient and adaptable P-CAD software in the apparel industry.

Design/methodology/approach

This study compared three different types of P-CAD software with different characteristics: SuperALPHA: PLUS(as known as YUKA), GRAFIS and Seamly2D. The authors analyzed the types and management methodologies of each software, according to the three essential components that refer to previous studies about parametric design systems: entities, constraints and parameters.

Findings

The results demonstrated the advantages and disadvantages of methodology in terms of three essential components of each software. Based on the results, the authors proposed five strategies for P-CAD development that can be applied to the mass customization of clothing.

Originality/value

This study is meaningful in that it consolidates and organizes information about P-CAD software that has previously been scattered. The framework used in this study has an academic value suggesting guidelines to analyze P-CAD systems.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 December 2023

Guodong Sa, Haodong Bai, Zhenyu Liu, Xiaojian Liu and Jianrong Tan

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are…

113

Abstract

Purpose

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are based on the rigid body assumption, and those assembly simulation methods considering deformation have a poor efficiency. This paper aims to propose a novel efficient and precise tolerance analysis method based on stable contact to improve the efficiency and reliability of assembly deformation simulation.

Design/methodology/approach

The proposed method comprehensively considers the initial rigid assembly state, the assembly deformation and the stability examination of assembly simulation to improve the reliability of tolerance analysis results. The assembly deformation of mating surfaces was first calculated based on the boundary element method with optimal initial assembly state, then the stability of assembly simulation results was assessed by the density-based spatial clustering of applications with noise algorithm to improve the reliability of tolerance analysis. Finally, combining the small displacement torsor theory, the tolerance scheme was statistically analyzed based on sufficient samples.

Findings

A case study of a guide rail model demonstrated the efficiency and effectiveness of the proposed method.

Research limitations/implications

The present study only considered the form error when generating the skin model shape, and the waviness and the roughness of the matching surface were not considered.

Originality/value

To the best of the authors’ knowledge, the proposed method is original in the assembly simulation considering stable contact, which can effectively ensure the reliability of the assembly simulation while taking into account the computational efficiency.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 4 April 2024

Bikram Jit Singh, Rippin Sehgal, Ayon Chakraborty and Rakesh Kumar Phanden

The use of technology in 4th industrial revolution is at its peak. Industries are trying to reduce the consumption of resources by effectively utilizing information and technology…

Abstract

Purpose

The use of technology in 4th industrial revolution is at its peak. Industries are trying to reduce the consumption of resources by effectively utilizing information and technology to connect different functioning agents of the manufacturing industry. Without digitization “Industry 4.0” will be a virtual reality. The present survey-based study explores the factual status of digital manufacturing in the Northern India.

Design/methodology/approach

After an extensive literature review, a questionnaire was designed to gather different viewpoints of Indian industrial practitioners. The first half contains questions related to north Indian demographic factors which may affect digitalization of India. The latter half includes the queries concerned with various operational factors (or drivers) driving the digital revolution without ignoring Indian constraints.

Findings

The focus of this survey was to understand the current level of digital revolution under the ongoing push by the Indian government focused upon digital movement. The analysis included non-parametric testing of the various demographic and functional factors impacting the digital echoes, specifically in Northern India. Findings such as technological upgradations were independent of type of industry, the turnover or the location. About 10 key operational factors were thoughtfully grouped into three major categories—internal Research and Development (R&D), the capability of the supply chain and the capacity to adapt to the market. These factors were then examined to understand how they contribute to digital manufacturing, utilizing an appropriate ordinal logistic regression. The resulting predictive analysis provides seldom-seen insights and valuable suggestions for the most effective deployment of digitalization in Indian industries.

Research limitations/implications

The country-specific Industry 4.0 literature is quite limited. The survey mainly focuses on the National Capital Region. The number of demographic and functional factors can further be incorporated. Moreover, an addition of factors related to ecology, environment and society can make the study more insightful.

Practical implications

The present work provides valuable insights about the current status of digitization and expects to facilitate public or private policymakers to implement digital technologies in India with less efforts and the least resistance. It empowers India towards Industry 4.0 based tools and techniques and creates new socio-economic dimensions for the sustainable development.

Originality/value

The quantitative nature of the study and its statistical predictions (data-based) are novel. The clubbing of similar success factors to avoid inter-collinearity and complexity is seldom seen. The predictive analytics provided in this study is quite elusive as it provides directions with logic. It will help the Indian Government and industrial strategists to plan and perform their interventions accordingly.

Details

Journal of Strategy and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-425X

Keywords

Article
Publication date: 13 February 2024

Pavankumar Sonawane, Chandrakishor Laxman Ladekar, Ganesh Annappa Badiger and Rahul Arun Deore

Snap fits are crucial in automotive applications for rapid assembly and disassembly of mating components, eliminating the need for fasteners. This study aims to focus on designing…

Abstract

Purpose

Snap fits are crucial in automotive applications for rapid assembly and disassembly of mating components, eliminating the need for fasteners. This study aims to focus on designing and analyzing serviceable cantilever fit snap connections used in automobile plastic components. Snap fits are classified into permanent and semi-permanent fittings, with permanent fittings having a snap clipping angle between 0° and 5° and semi-permanent fittings having a clipping angle between 15° and 45°. Polypropylene random copolymer is chosen for its exceptional fatigue resistance and elasticity.

Design/methodology/approach

The design process includes determining dimensions, computing assembly, disassembly pressures and creating three-dimensional computer-aided design models. Finite element analysis (FEA) is used to evaluate the snap-fit mechanism’s stress, deformation and general functionality in operational scenarios.

Findings

The study develops a modified snap-fit mechanism with decreased bending stress and enhanced mating force optimization. The maximum bending stress during assembly is 16.80 MPa, requiring a mating force of 7.58 N, while during disassembly, it is 37.3 MPa, requiring a mating force of 16.85 N. The optimized parameters significantly improve the performance and dependability of the snap-fit mechanism. The results emphasize the need of taking into account both the assembly and disassembly processes in snap-fit design, because the research demonstrates greater forces during disassembly. The approach developed integrates FEA and design for assembly (DFA) concepts to provide a solution for improving the efficiency and reliability of snap-fit connectors in automotive applications.

Originality/value

The research paper’s distinctiveness comes from the fact that it presents a thorough and realistic viewpoint on snap-fit design, emphasizes material selection, incorporates DFA principles and emphasizes the specific requirements of both assembly and disassembly operations. These discoveries may enhance the efficiency, reliability and sustainability of snap-fit connections in plastic automobile parts and beyond. In conclusion, the idea that disassembly needs to be done with a lot more force than installation in a snap-fit design can have a good effect on buzz, squeak and rattle and noise, vibration and harshness characteristics in automobiles.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 May 2022

Lucas B. Nhelekwa, Joshua Z. Mollel and Ismail W.R. Taifa

Industry 4.0 has an inimitable potential to create competitive advantages for the apparel industry by enhancing productivity, production, profitability, efficiency and…

Abstract

Purpose

Industry 4.0 has an inimitable potential to create competitive advantages for the apparel industry by enhancing productivity, production, profitability, efficiency and effectiveness. This study, thus, aims to assess the digitalisation level of the Tanzanian apparel industry through the Industry 4.0 perspectives.

Design/methodology/approach

A mixed-methods-based approach was deployed. This study deployed semi-structured interviews, document review and observation methods for the qualitative approach. For the quantitative approach, closed-ended questionnaires were used to ascertain the digitalisation levels and maturity level of the textiles and apparel (T&A) factories and small and medium-sized textile enterprises in Tanzania. The sample size was 110, with participants engaged through the purposive sampling technique.

Findings

Industry 4.0 frameworks evolved into practices mainly since 2011 in several service and manufacturing industries globally. For Tanzania, the findings indicate that the overall maturity level of the T&A industries is 2.5 out of 5.0, demonstrating a medium level of adoption. Thus, the apparel industries are not operating under the industry 4.0 framework; they are operating within the third industrial revolution – Industry 3.0 – framework. For such industries to operate within the fourth industrial revolution – Industry 4.0 – that is only possible if there is significantly well-developed industrial infrastructure, availability of engineering talent, stable commercial partnerships, demand from the marketplace and transactional relationship with customers.

Research limitations/implications

This study’s limitations include: firstly, Industry 4.0 is an emerging area; this resulted in limited theoretical underpinnings in the Tanzanian perspectives. Secondly, the studied industries may not suffice the need to generalise the findings for the entire country, thus needing another study.

Originality/value

Although Industry 4.0 conceptual frameworks have been on trial in several industries since 2011, this is amongst the first empirical research on Industry 4.0 in the Tanzanian apparel industry that assesses the digitalisation levels.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 November 2023

Rituraj Raut, Savitri Jadhav and Nathrao B. Jadhav

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different…

Abstract

Purpose

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different materials for different components that too without compromising strength.

Design/methodology/approach

A 3D computer-aided design (CAD) model of a hexacopter with a regular hexagonal frame is presented. Furthermore, a finite element model is developed to perform a structural analysis and determine Von Mises stress and strain values along with deformations of different components of the proposed hexacopter design.

Findings

The results establish that carbon fibre outperforms acrylonitrile butadiene (ABS) with respect to deformations. Within the permissible limits of the stress and strain values, both carbon fiber and ABS are suggested for different components. Thus, a proposed hexacopter offers lighter weight, high strength and low cost.

Originality/value

The use of different materials for different components is suggested by making use of static structural analysis. This encourages new research work and helps in developing new applications of hexacopter, and it has never been reported in literature. The suggested materials for the components of the hexacopter will prove to be suitable considering weight, strength and cost.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 201