Search results

1 – 10 of over 1000
Article
Publication date: 30 July 2021

Adesuwa Annabelle Ebuehi, Gift Okeoghene Eric and Benjamin Akinloye

The difficulty in winding coil-based electrical and electronic devices manually lies in the fact that it takes so much time and effort to perform. Furthermore, it is difficult to…

Abstract

Purpose

The difficulty in winding coil-based electrical and electronic devices manually lies in the fact that it takes so much time and effort to perform. Furthermore, it is difficult to achieve accuracy manually, as it is possible to lose count of the number of turns being wound. The purpose of this paper is to detail the design methods and calculations used to achieve a cost-effective, significantly accurate and more efficient method of winding coils.

Design/methodology/approach

A program flowchart was designed as a guideline for writing the program. An AT89C52 microcontroller was used to control the movement of the two direct current (DC) motors used in the construction of the machine. The circuit design obtained was then simulated using Proteus to test the functionality of the components together.

Findings

An electromechanical automatic coil winding machine for the coiling of simple, small-sized, coil-based electrical devices was successfully designed and fabricated. The machine was tested by winding a 1 kVA transformer. Diagrams, calculations, results and observations obtained during the design and construction are detailed in this paper.

Originality/value

This machine solves the problem of tediousness in coil winding, stably and precisely winding 60 turns/min at a 24 V supply and providing a keypad input method. Although portable automatic coil winding machines have been rendered previously, most have applied the use of stepper motors. The application of brushed DC motors alongside an AT89C52 microcontroller is a variation to the pool of renditions, offering better controllability and a sustained output.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 February 2024

Ali Hashemi, Hamed Taheri and Mohammad Dehghani

To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit…

Abstract

Purpose

To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit. This paper aims to investigate the effect of switching on the thermal behavior of impregnated and nonimpregnated windings. Also, the safe operating time for each winding is determined.

Design/methodology/approach

The power loss of the winding is expressed as a function of the winding specifications. Using homogenization techniques, the equivalent thermal properties for the homogenized winding are calculated and used in a proposed thermal equivalent circuit for winding modeling and analysis. The validity and accuracy of the proposed model are determined by comparing its analysis results and simulation and measurement results.

Findings

The results show that copper windings have better thermal behavior and lower temperature compared to aluminum windings. On the other hand, by impregnating or increasing the packing factor of the winding, the thermal behavior is improved. Also, by choosing the right duty cycle for the winding current source, it is possible to prevent the burning or damage of the winding and increase its lifespan. Comparing the measurement results with the analysis results shows that the proposed equivalent circuit has an error of less than 4% in the calculation of the winding center temperature.

Research limitations/implications

In this paper, the effect of temperature on the electrical resistance of the coil is ignored. Also, rectangular wires were not investigated. Research in these topics are considered as future work.

Originality/value

By calculating the thermal time constant of the winding, its safe operation time can be calculated so that its temperature does not exceed the tolerable value (150 °C). The proposed method analyzes both impregnated and nonimpregnated windings with various schemes. It investigates the effects of switching on their thermal behavior. Additionally, it determines the safe operating time for each type of winding.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 March 2019

Wei-Mon Yan, Hsu-Yang Teng, Chun-Han Li and Mohammad Ghalambaz

The electromagnetic field and cooling system of a high power switched reluctance motor (SRM) are studied numerically. The geometry of the motor and its main components are…

Abstract

Purpose

The electromagnetic field and cooling system of a high power switched reluctance motor (SRM) are studied numerically. The geometry of the motor and its main components are established using a computer-aided design software in the actual size. This study aims to evaluate the resulting thermal losses using the electromagnetic analysis of the motor.

Design/methodology/approach

In the electromagnetic analysis, the Joule’s loss in the copper wires of the coil windings and the iron losses (the eddy currents loss and the hysteresis loss) are considered. The flow and heat transfer model for the thermal analysis of the motor including the conduction in solid parts and convection in the fluid part is introduced. The magnetic losses are imported into the thermal analysis model in the form of internal heat generation in motor components. Several cooling system approaches were introduced, such as natural convection cooling, natural convection cooling with various types of fins over the motor casing, forced conviction air-cooled cooling system using a mounted fan, casing surface with and without heat sinks, liquid-cooled cooling system using the water in a channel shell and a hybrid air-cooled and liquid-cooled cooling system.

Findings

The results of the electromagnetics analysis show that the low rotational speed of the motor induces higher currents in coil windings, which in turn, it causes higher copper losses in SRM coil windings. For higher rotational speed of SRM, the core loss is higher than the copper loss is in SRM due to the higher frequency. An air-cooled cooling system is used for cooling of SRM. The results reveal when the rotational speed is at 4,000 rpm, the coil loss would be at the maximum value. Therefore, the coil temperature is about 197.9°C, which is higher than the tolerated standard temperature insulation material. Hence, the air-cooled system cannot reduce the temperature to the safe temperature limitation of the motor and guarantee the safe operation of SRM. Thus, a hybrid system of both air-cooled and liquid-cooled cooling system with mounting fins at the outer surface of the casing is proposed. The hybrid system with the liquid flow of Re = 1,500 provides a cooling power capable of safe operation of the motor at 117.2°C, which is adequate for standard insulation material grade E.

Originality/value

The electromagnetic field and cooling system of a high power SRM in the presence of a mounted fan at the rear of the motor are analyzed. The thermal analysis is performed for both of the air-cooled and liquid-cooled cooling systems to meet the cooling demands of the motor for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2012

Yang Tang, Johannes J.H. Paulides, Evgeny Kazmin and Elena A. Lomonova

This paper aims to find the optimal winding topology for a 14‐pole permanent magnet synchronous motor (PMSM) to be used as an in‐wheel motor in automotive applications.

Abstract

Purpose

This paper aims to find the optimal winding topology for a 14‐pole permanent magnet synchronous motor (PMSM) to be used as an in‐wheel motor in automotive applications.

Design/methodology/approach

Comparison is first performed among lap windings with different combinations of slot numbers and pole numbers. A general method for calculating the winding factors using only these numbers is proposed, thus the preferable slot numbers resulting in relatively large winding factors for this 14‐pole PMSM are found. With these slot numbers, the Joule losses of armature windings are further investigated, where the impacts of different end‐winding lengths are considered. By this means, the optimal slot number that causes the least Joule loss is obtained. On the other hand, as a competitor to lap windings, toroidal windings are also discussed. The thermal performances of these two types of windings are compared by performing a finite element analysis (FEA) on their 2‐D thermal models.

Findings

For the 14‐pole in‐wheel PMSM discussed in this paper, the preferable slot numbers leading to relatively large winding factors are 12, 15 and 18. However, with the specified geometry constraints, the optimal choice of slot number is 15, which results in the least Joule loss and thus the highest efficiency. On the other hand, by implementing the toroidal winding topology, the armature windings of this machine can be effectively cooled and thus allow a larger electrical loading than the lap windings do.

Research limitations/implications

This work can be continued with investigating the impacts of different combinations of slot number and pole number on harmonics and cogging torques.

Originality/value

This paper proposes a general method for calculating the winding factor of PMSMs using only the phase number, the slot number, and the pole number. With this method, the calculation procedure can be easily programmed and repeated.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2011

Jin‐Tao Chen and Zi‐Qiang Zhu

The purpose of this paper is to analyze the phase coil connections and winding factors of flux‐switching permanent magnet (FSPM) brushless AC machines with all poles and alternate…

Abstract

Purpose

The purpose of this paper is to analyze the phase coil connections and winding factors of flux‐switching permanent magnet (FSPM) brushless AC machines with all poles and alternate poles wound, and different combinations of stator and rotor pole numbers.

Design/methodology/approach

The coil‐emf vectors, which are widely used for analyzing the conventional fractional‐slot PM machines with non‐overlapping windings, are employed for FSPM machines.

Findings

Although the coil‐emf vectors have been employed to obtain coil connections in the conventional fractional‐slot PM machines, they are different in FSPM machines. It is mainly due to different polarities in the stator of FSPM machines. In addition, from the coil‐emf vectors it is able to predict whether the back‐emf waveforms are symmetrical or asymmetric.

Originality/value

This is the first time that coil‐emf vectors are used to determine the coil connections and winding factors in FSPM machines with different topologies and combination of stator and rotor pole numbers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 May 2015

Rafal M. Wojciechowski and Cezary Jedryczka

– The purpose of this paper is to analyse the stray losses in the windings of permanent magnet synchronous machines (PMSM).

Abstract

Purpose

The purpose of this paper is to analyse the stray losses in the windings of permanent magnet synchronous machines (PMSM).

Design/methodology/approach

The 2D field model, based on the edge element method (EEM) and

A

-V formulation, has been developed and utilized for the determination and analysis of stray losses in the PMSM with concentrated windings made of strip conductors. The influence of the supply frequency as well as the slot opening width on the losses caused by eddy currents has been examined. The different arrangements of the conductors in the tape wound coils have been studied. The obtained results have been compared to the reference case when the eddy current effect is neglected.

Findings

The usefulness of the proposed methodology of the stray losses evaluation has been tested on the case study problem. It has been observed that the stray losses in the windings of the considered machine can be reduced by choosing the proper value of the slot opening. The dependence of the stray losses on the frequency of the supply currents has been examined. The obtained results show that with the increase of frequency the stray losses caused by the eddy currents in the strip conductors increase.

Originality/value

The proposed 2D field numerical model makes it possible to analyse the stray losses in the tape wound concentrated windings of the PMSM motor. The presented model can be utilized for the optimization of the magnetic circuit of the machine with the aim of minimizing eddy current losses.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 2024

Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian-Poodeh

The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies…

Abstract

Purpose

The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies based on the concept of thermal resistance.

Design/methodology/approach

For regular windings, the periodic microscopic cell in the winding space is identified. Also, for irregular windings, the average microscopic cell of the winding is determined. An approximation is used to calculate the thermal resistance of the winding cell. Based on this approximation, the winding insulation is considered as a circular ring around the wire. Mathematical equations are obtained to calculate the equivalent thermal resistance of the cell. The equivalent thermal conductivity of the winding is calculated using equivalent thermal resistance of the cell. Winding thermal homogenization is completed by determining the equivalent thermal properties of the cell.

Findings

The thermal pattern of different windings is simulated and compared with the results of different homogenization methods. The results show that the proposed method is applicable for a wide range of windings in terms of winding scheme, packing factor and winding insulation. Also, the results show that the proposed method is more accurate than other winding homogenization methods in calculating the equivalent thermal conductivity of the winding.

Research limitations/implications

In this paper, the change of electrical resistance of the winding with temperature and thermal contact between the sub-components are ignored. Also, liquid insulators, such as oils, and rectangular wires were not investigated. Research in these topics is considered as future work.

Originality/value

Unlike other homogenization methods, the proposed method can be applied to non-impregnated and irregular windings. Also, compared to other homogenization methods, the proposed method has a simpler formulation that makes it easier to program and implement. All of these indicate the efficiency of the proposed method in the thermal analysis of the winding.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 November 2009

Ayman M. EL‐Refaie, Z.Q. Zhu, Thomas M. Jahns and David Howe

Permanent magnet (PM) brushless machines equipped with fractional‐slot concentrated‐windings (FSCW) have been receiving considerable attention over the past few years, due to the…

1094

Abstract

Purpose

Permanent magnet (PM) brushless machines equipped with fractional‐slot concentrated‐windings (FSCW) have been receiving considerable attention over the past few years, due to the fact that they have short end‐windings, a high‐slot fill factor, a high efficiency and power density, and good flux‐weakening and fault‐tolerance capabilities. A key design parameter for such machines is the phase winding inductance since this has a significant impact on the performance, as well as on the magnitude of any reluctance torque. The purpose of this paper is to describe a detailed investigation of the various components of the winding inductance in machines equipped with both overlapping and non‐overlapping windings and different slot/pole number combinations. It also examines the influence of key design parameters, which affect the inductance components, with particular reference to the inductances of machines in which all the teeth are wound and those in which only alternate teeth are wound.

Design/methodology/approach

The paper analyzes and compares various inductance components which result from different winding configurations.

Findings

It is shown that the main component of the winding inductance is the relatively large slot‐leakage component. Both analytical and finite element models are employed and predicted results are validated on several prototype machines.

Originality/value

Such a thorough investigation of the various inductance components for these type of machines has not been presented before. The paper will serve as a good reference for engineers and researchers designing PM machines equipped with FECW.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 April 2023

Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian

An excessive increase in temperature will reduce the lifespan and even burn the coil. The variety of materials in the structure of the electromagnet along with its multi-layer…

Abstract

Purpose

An excessive increase in temperature will reduce the lifespan and even burn the coil. The variety of materials in the structure of the electromagnet along with its multi-layer winding creates a complex and heterogeneous thermal structure. There are very few researches that are completely focused on the thermal analysis of electromagnets. The purpose of this paper is to provide an accurate, yet fast and simple method for the thermal analysis of cylindrical electromagnets in both transient and steady-state modes. For this purpose, a thermal equivalent circuit (TEC) is presented based on the nodding approach.

Design/methodology/approach

The results of TEC analysis of cylindrical electromagnet, for two orthogonal and orthocyclic winding coil technologies, were compared with the results of the thermal simulation in COMSOL. The authors also built a laboratory model of the cylindrical electromagnet, similar to those analyzed and simulated, and measured the temperature in different parts of it.

Findings

The comparison of the results obtained from different methods for the thermal analysis of the cylindrical electromagnet indicates that the proposed TEC has an error of less than 2%. The simplicity and high accuracy of the results are the most important advantages of the proposed TEC.

Originality/value

Comparing the information and results related to winding schemes, indicates that the orthogonal winding has less cost and weight due to the shorter length of the wire used. On the other hand, orthocyclic winding generates lower temperature and has more lifting force, and is simpler to implement. Therefore, in practice, orthocyclic winding technology is usually used.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000