Search results

1 – 10 of over 6000
Article
Publication date: 14 March 2019

Wei-Mon Yan, Hsu-Yang Teng, Chun-Han Li and Mohammad Ghalambaz

The electromagnetic field and cooling system of a high power switched reluctance motor (SRM) are studied numerically. The geometry of the motor and its main components are…

Abstract

Purpose

The electromagnetic field and cooling system of a high power switched reluctance motor (SRM) are studied numerically. The geometry of the motor and its main components are established using a computer-aided design software in the actual size. This study aims to evaluate the resulting thermal losses using the electromagnetic analysis of the motor.

Design/methodology/approach

In the electromagnetic analysis, the Joule’s loss in the copper wires of the coil windings and the iron losses (the eddy currents loss and the hysteresis loss) are considered. The flow and heat transfer model for the thermal analysis of the motor including the conduction in solid parts and convection in the fluid part is introduced. The magnetic losses are imported into the thermal analysis model in the form of internal heat generation in motor components. Several cooling system approaches were introduced, such as natural convection cooling, natural convection cooling with various types of fins over the motor casing, forced conviction air-cooled cooling system using a mounted fan, casing surface with and without heat sinks, liquid-cooled cooling system using the water in a channel shell and a hybrid air-cooled and liquid-cooled cooling system.

Findings

The results of the electromagnetics analysis show that the low rotational speed of the motor induces higher currents in coil windings, which in turn, it causes higher copper losses in SRM coil windings. For higher rotational speed of SRM, the core loss is higher than the copper loss is in SRM due to the higher frequency. An air-cooled cooling system is used for cooling of SRM. The results reveal when the rotational speed is at 4,000 rpm, the coil loss would be at the maximum value. Therefore, the coil temperature is about 197.9°C, which is higher than the tolerated standard temperature insulation material. Hence, the air-cooled system cannot reduce the temperature to the safe temperature limitation of the motor and guarantee the safe operation of SRM. Thus, a hybrid system of both air-cooled and liquid-cooled cooling system with mounting fins at the outer surface of the casing is proposed. The hybrid system with the liquid flow of Re = 1,500 provides a cooling power capable of safe operation of the motor at 117.2°C, which is adequate for standard insulation material grade E.

Originality/value

The electromagnetic field and cooling system of a high power SRM in the presence of a mounted fan at the rear of the motor are analyzed. The thermal analysis is performed for both of the air-cooled and liquid-cooled cooling systems to meet the cooling demands of the motor for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 May 2014

Grażyna Bartkowiak, Anna Dąbrowska and Anna Marszałek

People working in the hot environment are constantly exposed to the overheating, that can lead to cardiovascular disorders and as a consequence result in occupational diseases…

Abstract

Purpose

People working in the hot environment are constantly exposed to the overheating, that can lead to cardiovascular disorders and as a consequence result in occupational diseases. The purpose of this paper is to present developed personal liquid cooling system that is able to efficiently draw excess heat from the human organism, protecting against thermal stress.

Design/methodology/approach

The paper presents study concerning the assessment of effect of the coolant temperature in the developed liquid cooling garment (LCG) on physiological parameters of the subjects (heart rate, body temperature, skin temperature) and parameters of the undergarment microclimate, as well as subjective sensations reported by volunteers exercising in hot microclimate while wearing LCG and without LCG.

Findings

Obtained results of physiological parameters measurements, as well as undergarment physical parameters and volunteers subjective sensations, proved satisfactory level of thermal stress reduction while working in the aluminized protective clothing in hot environment by the developed personal liquid cooling system for the variant with coolant temperature 19°C and the flow rate 0.9 dm3/min.

Originality/value

This paper presents a new clothing construction intended for LCG that can efficiently support human thermoregulation processes while working in the hot environment.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 March 1939

W.N. Twelvetrees

FOR many years the basic design and construction of aircraft has been closely linked with the cooling system employed for the power plant which it is desired to utilise and as a…

Abstract

FOR many years the basic design and construction of aircraft has been closely linked with the cooling system employed for the power plant which it is desired to utilise and as a general rule machines have been produced specifically for either liquid‐ or air‐cooled engines. Conversions of liquidcooled engined machines to suit an air‐cooled installation and vice versa have been successfully carried out in the past and to‐day there is a tendency for twin‐engined military aircraft to be constructed so that alternative installations may be employed, but the complications necessitated by such a practice provide good reason for producing the airframe to suit one particular engine. The general recognition of this policy has served to emphasise the importance of deciding the type of engine most suitable for the purpose for which the machine is required and has possibly lent weight to the claims submitted by various engine manufacturers. The merits of one variety of engine as opposed to the other is a subject which has from time to time received much attention, but, as the object of this article is to trace the development of liquidcooling systems, a brief outline of what is considered parallel advancement in air‐cooled practice may be of interest.

Details

Aircraft Engineering and Aerospace Technology, vol. 11 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 February 1946

G.E. Lind Walker

THE combined effect of Sections III and IV is a gain of up to 3 per cent t.h.p. at moderate speeds, over the best systems without a blower, in spite of the detrimental effect of…

Abstract

THE combined effect of Sections III and IV is a gain of up to 3 per cent t.h.p. at moderate speeds, over the best systems without a blower, in spite of the detrimental effect of heating of the air due to compression. The blower absorbs about 10 per cent b.h.p. which is additionally recovered as useful thrust. Pressure air cooling does not permit the economical use of materially smaller matrices.

Details

Aircraft Engineering and Aerospace Technology, vol. 18 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 February 2002

J.E. Ruckman, S.G. Hayes and J.H. Cho

Based upon numerous assertions that a garment should be developed to maximise athletes' muscle performance while maintaining freedom of movement, this paper initially discusses…

Abstract

Based upon numerous assertions that a garment should be developed to maximise athletes' muscle performance while maintaining freedom of movement, this paper initially discusses the development of a perfusion suit that utilises a flexible single layer cooling system, with a view to the development of a cooling garment that does not employ a conventional tubing system which can restrict movement. The stages of the development have been described in detail, and an appropriate evaluation completed for both the initially developed perfusion suit and the subsequently developed cooling garment (modified perfusion suit). From results obtained from experiments conducted using the cooling garment, which incorporates super absorbent sodium polyacrylate pads as the cooling component, the following conclusions were drawn. First, anterior thigh temperature was reduced by 4–5°C at the end of the cooling period confirming that the developed cooling garment provides effective cooling. Second, although the difference between the skin temperature of the anterior thigh when cooling is applied to that when cooling is not applied decreased during the exercise period, the difference is still significant confirming that cooling of the anterior thigh by wearing the developed cooling garment persists throughout the duration of exercise.

Details

International Journal of Clothing Science and Technology, vol. 14 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 July 2023

Shian Li, Chongyang Wang, Qiuwan Shen, Yuanzhe Cheng, Chengdong Peng, Guogang Yang and Bengt Ake Sunden

The purpose of this study is to design a new type of cold plate to improve the thermal performance of liquid-cooled thermal management system of lithium-ion batteries.

Abstract

Purpose

The purpose of this study is to design a new type of cold plate to improve the thermal performance of liquid-cooled thermal management system of lithium-ion batteries.

Design/methodology/approach

A cold plate with leaf type channels is proposed to enhance the cooling performance. Effects of the leaf type channel parameters (i.e. channel angle 20°, 40°, 60°, 80°; coolant mass flow rate 0.25 × 10–3, 0.50 × 10–3, 0.75 × 10–3, 1.00 × 10–3, 1.25 × 10–3 kg·s−1; channel number 1, 3, 5, 7) on the performance are numerically investigated by using a 3D mathematical model.

Findings

Compared to the traditional I type channels, the leaf type channels have better cooling performance. It is found that the battery temperature variation and channel pressure drop are decreased with decreasing channel angle and increasing channel number. In addition, the cooling performance can be improved by increasing the coolant mass flow rate.

Practical implications

This study can provide guidance for the development of novel effective cold plates.

Originality/value

The design of cold plates with leaf type channels can be used in liquid-cooled thermal management system to reduce the battery temperature difference.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 February 2017

Muhammad Usman, Qazi Shehzad Ali and Muhammed Bilal

Decreasing sources of fossil fuels has caused an increase in importance of the renewable energy resources and systems that directly utilize renewable energy are even more…

Abstract

Purpose

Decreasing sources of fossil fuels has caused an increase in importance of the renewable energy resources and systems that directly utilize renewable energy are even more important. The purpose of the paper is to compare the most common solar cooling technologies against the most important requirements.

Design/methodology/approach

A multi-criteria decision methodology, analytical hierarchical process, has been used to prioritize these technologies with respect to each other.

Findings

The findings of this study are the priorities of selected solar cooling concepts against performance affecting criteria. The solar vapour adsorption cooling system has been found to be the optimum solar cooling concept with practically the highest performance number compared with the other cooling systems.

Originality/value

This study can be used in the future development of solar cooling technologies to benefit from the best collective features of the specific technologies.

Details

World Journal of Engineering, vol. 14 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 February 2022

Hakan F. Oztop, Rıdvan Özgül and Fatih Selimefendigil

The purpose of this paper is to analyze the performance of a data center and thermal management by using phase change material (PCM). Numerical studies were conducted for two…

Abstract

Purpose

The purpose of this paper is to analyze the performance of a data center and thermal management by using phase change material (PCM). Numerical studies were conducted for two dimensional model of data center and installation of PCM at different locations.

Design/methodology/approach

Finite volume method was used for the unsteady problem, while impacts of air velocity and PCM location on the flow field, thermal pattern variations and phase change dynamics were evaluated. Three different locations of the PCM were considered while air velocity was also varied during the simulation. Thermal field variations and cooling performance of the system for different PCM location scenarios were compared.

Findings

It was observed that the installation of the PCM has significant impacts on the vortex formation, thermal field variation within the system and its performance. The left, right and top wall installation of the PCM changed the thermal patterns near the heat cell of the data centre. The phase change process is fast for the upper wall installation of the PCM, while the discrepancy of the melt fraction dynamics between different air flow at this position is minimum. The case where PCM placed in the upper wall at the highest air velocity is the best configuration in terms of heat storage. The utilization of PCM and changing its locations provide an excellent tool for thermal management and cooling performance of data centre.

Originality/value

Results of this study can be used for initial design and optimization of cooling systems for thermal management of data centers while the importance of the high-performance computing becomes very crucial for the advanced simulations in different technological applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1967

G.A. Halls

THE demand of the aircraft designer has been, and presumably always will be, for his engines to operate better in three basic respects. To give more thrust, to have less weight…

Abstract

THE demand of the aircraft designer has been, and presumably always will be, for his engines to operate better in three basic respects. To give more thrust, to have less weight, and to require less fuel.

Details

Aircraft Engineering and Aerospace Technology, vol. 39 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 13 October 2022

Eyyüp Öksüztepe, Ufuk Kaya and Hasan Kurum

More electric aircraft (MEA) is defined as the extensive usage of electric power in aircraft. The demand for electric power in new generation aircraft rises due to environmental…

Abstract

Purpose

More electric aircraft (MEA) is defined as the extensive usage of electric power in aircraft. The demand for electric power in new generation aircraft rises due to environmental and economic considerations. Hence, efficient and reliable starter/generators (SGs) are trending nowadays. The conventional main engine starting system and power generation system can be replaced with an individual SG. The constraints of the SG should be investigated to handle the aviation requirements. Even though the SG is basically an electric machine, it requires a multidisciplinary study consisting of electromagnetic, thermal and mechanical works to cope with aviation demands. This study aims to review conventional and new-generation aircraft SGs from the perspective of electric drive applications.

Design/methodology/approach

First of all, the importance of the MEA concept has been briefly explained. Also, the historical development and the need for higher electrical power in aircraft have been indicated quantitatively. Considering aviation requirements, the candidate electrical machines for aircraft SG have been determined by the method of scoring. Those machines are compared over 14 criteria, and the most predominant of them are specified as efficiency, power density, rotor thermal tolerance, high-speed capability and machine complexity. The features of the most suitable electrical machine are pointed out with data gathered from empirical studies. Finally, the trending technologies related to efficient SG design have been explained with numeric datasets.

Findings

The induction motor, switched reluctance motor and permanent magnet synchronous motor (PMSM) are selected as the candidate machines for SGs. It has been seen that the PMSM is the most preferable machine type due to its efficient operation in a wide range of constant power and speed. It is computationally proven that the using amorphous magnetic alloys in SG cores increases the machine efficiency more. Also, the benefits of high voltage direct current (HVDC) use in aircraft have been explained by a comparison of different aircraft power generation standards. It is concluded that the HVDC use in aircraft decreases total cable weight and increases aircraft operation efficiency. The thermal and mechanical tolerance of the SG is also vital. It has been stated that the liquid cooling techniques are suitable for SGs.

Originality/value

The demand for electrical power in new generation aircraft is increasing. The SG can be used effectively and efficiently instead of conventional systems. To define requirements, constraints and suggestions, this study investigates the SGs from the perspective of electric drive applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 6000