Search results

1 – 10 of 166
Article
Publication date: 14 February 2024

Lu Luo, Kang Qi and Hualiang Huang

The purpose of this paper is to investigate the effects of chloride ion concentration and applied bias voltage on the electrochemical migration (ECM) behavior between Cu and Ag…

Abstract

Purpose

The purpose of this paper is to investigate the effects of chloride ion concentration and applied bias voltage on the electrochemical migration (ECM) behavior between Cu and Ag under an NaCl thin electrolyte layer (TEL).

Design/methodology/approach

A self-made experimental setup for the ECM behavior between Cu and Ag was designed. An HD video measurement microscopy was used to observe the typical dendrite/corrosion morphology and pH distribution. Short-circuit time (SCT), short-circuit current density and the influence of the galvanic effect between Cu and Ag on their ECM behavior were studied by electrochemical tests. The surface morphology and composition of dendrite were characterized by FESEM/EDS.

Findings

The SCT increased with increasing NaCl concentration but decreased with increasing applied bias voltage, and the SCT between Cu and Ag was less than that between Cu and Cu because their galvanic effect accelerated the dissolution and migration of Cu. When NaCl concentration was less than or equal to 6 mmol/L, cedar-like dendrite was formed, whereas no dendrite formed and only precipitation occurred at high chloride ion concentration (100 mmol/L). The composition of the dendrite between Cu and Ag was copper.

Research limitations/implications

The significance of this study is to clarify the ECM failure mechanism of printed circuit board (PCB) with an immersion silver surface finish (PCB-ImAg).

Practical implications

This study provides a basic theoretical basis for the selection of protective measures and metal coatings for PCB.

Social implications

The social implication of this study is to predict the service life of PCB.

Originality/value

The ECM behavior of dissimilar metals under a TEL was investigated, the influence of the galvanic effect between them on their ECM was discussed, and the SCT increased with increasing NaCl concentration.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 17 April 2024

Manisha Malik, Devyani Tomar, Narpinder Singh and B.S. Khatkar

This study aims to provide a salt ready-mix to instant fried noodles manufacturers.

Abstract

Purpose

This study aims to provide a salt ready-mix to instant fried noodles manufacturers.

Design/methodology/approach

Response surface methodology was used to get optimized salt ready-mix based on carbonate salt, disodium phosphate, tripotassium phospahte, sodium hexametaphosphate and sodium chloride. Peak viscosity of flour and yellowness, cooking loss and hardness of noodles were considered as response factors for finding optimized salt formulation.

Findings

The results showed that salts have an important role in governing quality of noodles. Optimum levels of five independent variables of salts, namely, carbonate salt (1:1 mixture of sodium to potassium carbonate), disodium phosphate, sodium hexametaphosphate, tripotassium phosphate and sodium chloride were 0.64%, 0.29%, 0.25%, 0.46% and 0.78% on flour weight basis, respectively.

Originality/value

To the best of the authors’ knowledge, this is the first study to assess the effect of different combinations of different salts on the quality of noodles. These findings will also benefit noodle manufacturers, assisting in production of superior quality noodles.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 30 January 2024

Kuleni Fekadu Yadeta, Sudath C. Siriwardane, Tesfaye Alemu Mohammed and Hirpa G. Lemu

Incorporating pre-existing crack in service life prediction of reinforced concrete structures subjected to corrosion is crucial for accurate assessment, realistic modelling and…

Abstract

Purpose

Incorporating pre-existing crack in service life prediction of reinforced concrete structures subjected to corrosion is crucial for accurate assessment, realistic modelling and effective decision-making in terms of maintenance and repair strategies.

Design/methodology/approach

An accelerated corrosion test was conducted by using impressed current method on cylindrical specimens with varying cover thickness and crack width. Mechanical properties of the specimens were evaluated by tensile tests.

Findings

The results show that, the pre-cracked samples exhibited shorter concrete cover cracking times, particularly with wider cracks when compared to the uncracked samples. Moreover, the load-bearing capacity of the reinforcement bars decreased owing to the pre-cracks, causing structural deflection and a shortened yield plateau. However, the ductility index remained consistent across all sample types, implying that the concrete had good overall ductility. Comparing the results of the non-corroded rebar and corroded rebar samples, the maximum reduction in the yield load was 25.22%, whereas the maximum reduction in the ultimate load was 26.23%. The simple mathematical model proposed in this study provides a reliable method for predicting the chloride ion diffusion coefficient in cracked concrete of existing reinforced concrete structures.

Originality/value

A simple mathematical model was proposed for evaluation of the equivalent chloride ion diffusion coefficient considering crack width, average crack spacing and crack extending lengths for cracked reinforced concrete structures, which is used to incorporate existing crack in service life prediction models.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 October 2023

Minakshi Koundal, Ajay Kumar Singh and Chhaya Sharma

This paper aims to investigate the eco-friendly neodymium tartrate (NdTar) inhibitor for mild steel in sodium chloride (NaCl) solution.

Abstract

Purpose

This paper aims to investigate the eco-friendly neodymium tartrate (NdTar) inhibitor for mild steel in sodium chloride (NaCl) solution.

Design/methodology/approach

The mild steel 1010 coupon was considered for the current study. Weight loss and the electrochemical methods were used to evaluate the inhibitory effects of neodymium chloride (NdCl3) and NdTar on mild steel in NaCl solution. Scanning electron microscopy, energy-dispersive X-ray analysis and attenuated total reflectance-Fourier transform infrared spectroscopy measurements were carried out to study the morphology and composition of the film, nature of deposits and corrosion products formed in test media on the corroded steel, with the objective of further analyzing the observed behavior of the two inhibitors.

Findings

Of the two, NdTar performs better than NdCl3 because it shields mild steel surfaces for longer. According to the results, when NdCl3 is present in a corrosive solution, the protective film only comprises Nd/Fe oxide/hydroxide/carbonate. However, when neodymium is coupled with the tartrate group (an organic group) and then added to the NaCl solution, the inhibitor film comprises both bimetallic complexes (Fe-Tar-Nd) and metal oxide/hydroxide/carbonate, which results in a more compact film and has higher inhibition efficiency.

Originality/value

This study evaluated the combined effects of inorganic and organic inhibitors with those of an inorganic inhibitor used alone for mild steel in NaCl solution.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 August 2022

Eman Salim and Rushdya Rabee Ali Hassan

The main aim of this study is to study the effect of alkyl dimethyl benzyl ammonium chloride on removing stains, yellowness and harmful metal ions on historical printed paper, as…

Abstract

Purpose

The main aim of this study is to study the effect of alkyl dimethyl benzyl ammonium chloride on removing stains, yellowness and harmful metal ions on historical printed paper, as well as the effect of this cleaner on optical and chemical properties of treated paper.

Design/methodology/approach

The assessments after and before treatment were carried out using digital microscopy, infrared spectroscopy (FTIR), pH measurement, color change and finally scanning electron microscopy.

Findings

The results showed that the concentrations used under study (1% and 3%) cleaned the paper efficiently without any observed effect on the chemical composition of cellulose, which was confirmed by IR spectra. The most stains that completely disappeared were the soil spots, also the pH values had improved significantly after treatment, which confirms that the detergent is effective in neutralizing the acidity of cellulose. Moreover, the color change revealed an increase in the chromatic lightness of the paper after treatment, which agreed with the results of the scanning electron microscopy examination, as the paper appeared free of dirt, and the fibers and bundles became more cohesive.

Originality/value

To the best of the authors’ knowledge, this study is a unique study, as there is no previous literature that has indicated the use of the effect of alkyl dimethyl benzyl ammonium chloride washing treatments for printed historical paper, as it was limited only to making disinfection materials and water purification products.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 November 2022

Youssef L. Nashed, Fouad Zahran, Mohamed Adel Youssef, Manal G. Mohamed and Azza M. Mazrouaa

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic…

Abstract

Purpose

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic polymer.

Design/methodology/approach

Applying free radical polymerization, an acrylate terpolymer emulsion that a surfactant had stabilized was created. A thermogravimetric analysis, minimum film-forming temperature, Fourier transform infrared spectroscopy and particle size distribution are used to characterize the prepared eco-friendly water base acrylate terpolymer emulsion. Using three different percentages of the acrylate terpolymer emulsion produced, 35%, 45% and 55%, the anti-carbonation coating was formed. Tensile strength, tensile strain, elongation, crack-bridging ability, carbon dioxide permeability, chloride ion diffusion, average pull-off adhesion strength, water vapor transmission, gloss, wet scrub resistance, QUV/weathering and storage stability are the characteristics of the anti-carbonation coating.

Findings

The formulated acrylate terpolymer emulsion enhances anti-carbonation coating performance in CO2 permeability, Cl-diffusion, crack bridging, pull-off adhesion strength and water vapor transmission. The formed coating based on the formulated acrylate terpolymer emulsion performed better than its commercial counterpart.

Practical implications

To protect the steel embedded in concrete from corrosion and increase the life span of concrete, the surface of cement is treated with an anti-carbonation coating based on synthetic acrylate terpolymer emulsion.

Social implications

In addition to saving lives from building collapse, it maintains the infrastructure for the long run.

Originality/value

The anti-carbonation coating, which is based on the synthetic acrylate terpolymer emulsion, is environmentally benign and stops the entry of carbon dioxide and chlorides, which are the main causes of steel corrosion in concrete.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 May 2024

Shan Gao, Bin Wang, Xinjie Yao and Quan Yuan

This paper aims to characterize the surface film formed on Alloys 800 and 690 in chloride and thiosulfate-containing solution at 300°C.

Abstract

Purpose

This paper aims to characterize the surface film formed on Alloys 800 and 690 in chloride and thiosulfate-containing solution at 300°C.

Design/methodology/approach

Alloy 800 and 690 were immersed in chloride and thiosulfate-containing solution at 300°C up to five days, and then the surface film was analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray spectrometers (EDX).

Findings

Through static immersion experiments in a high-temperature and high-pressure water environment, the alloy samples covered by surface film after five days of immersion were obtained. The morphology of the surface film was characterized at both horizontal and cross-sectional scales using SEM and focused ion beam-TEM techniques. It was observed that due to the influence of the quartz lining, the surface film primarily exhibited a bilayered structure. The first layer contained a significant amount of SiO2, with a higher content of metal hydroxides compared to metal oxides. The second layer was predominantly composed of Fe, Ni and Cr, with a higher content of metal oxides compared to metal hydroxides.

Originality/value

The results showed that the materials of the lining of the autoclave could significantly influence the film composition of the tested material, which should be paid attention when analyzing the corrosion mechanism at high temperature.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 25 December 2023

Jiahe Wang, Huajian Li, Chengxian Ma, Chaoxun Cai, Zhonglai Yi and Jiaxuan Wang

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Abstract

Purpose

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Design/methodology/approach

China has built a railway network of over 150,000 km. Ensuring the safety of the existing railway engineering is of great significance for maintaining normal railway operation order. However, railway engineering is a strip structure that crosses multiple complex environments. And railway engineering will withstand high-frequency impact loads from trains. The above factors have led to differences in the deterioration characteristics and maintenance strategies of railway engineering compared to conventional concrete structures. Therefore, it is very important to analyze the key factors that affect the durability of railway structures and propose technologies for durability evaluation.

Findings

The factors that affect the durability and reliability of railway engineering are mainly divided into three categories: material factors, environmental factors and load factors. Among them, material factors also include influencing factors, such as raw materials, mix proportions and so on. Environmental factors vary depending on the service environment of railway engineering, and the durability and deterioration of concrete have different failure mechanisms. Load factors include static load and train dynamic load. The on-site rapid detection methods for five common diseases in railway engineering are also proposed in this paper. These methods can quickly evaluate the durability of existing railway engineering concrete.

Originality/value

The research can provide some new evaluation techniques and methods for the durability of existing railway engineering.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 7 December 2021

Santosh Kumar Karri, Markandeya Raju Ponnada and Lakshmi Veerni

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on…

Abstract

Purpose

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on to diminish CO2 content in the atmosphere by appropriate utilization of waste by-products of industries. Alkali-activated slag concrete (AASC) is an innovative green new concrete made by complete replacement of cement various supplementary cementitious raw materials. Concrete is a versatile material used in different fields of structures, so it is very important to study the durability in different exposures along with the strength. The purpose of this paper is to study the performance of AASC by incorporating quartz sand as fine aggregate under different exposure conditions.

Design/methodology/approach

The materials for this innovative AASC are selected based on preliminary studies and literature surveys. Based on numerous trials a better performance mix proportion of AASC with quartz sand is developed with 1:2:4 mix proportion, 0.8 alkali Binder ratio, 19 M of NaOH and 50% concentration of Na2SiO3. Subsequently, AASC cubes are prepared and exposed for 3, 7, 14, 28, 56, 90, 112, 180, 252 and 365 days in ambient, acid, alkaline, sulfate, chloride and seawater and tested for compressive strength. In addition, to study the microstructural characteristics, scanning electron microscope (SEM), energy dispersive X-ray analysis and X-ray diffraction analysis was also performed.

Findings

Long-term performance of AASC developed with quartz sand is very good in the ambient, alkaline environment of 5% NaOH and seawater with the highest compressive strength values of 51.8, 50.83 and 64.46, respectively. A decrease in compressive strengths was observed after the age of 14, 56 and 112 days for acid, chloride and sulfate exposure conditions, respectively. SEM image shows a denser microstructure of AASC matrix for ambient, alkaline of 5% NaOH and seawater.

Research limitations/implications

The proposed AASC is prepared with a mix proportion of 1:2:4, so the other proportions of AASC need to verify. In general plain, AASC is not used in practice except in few applications, in this work the effect of reinforced AASC is not checked. The real environmental exposure in fields may not create for AASC, as it was tested in different exposure conditions in the laboratory.

Practical implications

The developed AASC is recommended in practical applications where early strength is required, where the climate is hot, where water is scarce for curing, offshore and onshore constructions exposed to the marine environment and alkaline environment industries like breweries, distilleries and sewage treatment plants. As AASC is recommended for ambient air and in other exposures, its implementation as a construction material will reduce the carbon footprint.

Originality/value

The developed AASC mix proportion 1:2:4 is an economical mix, because of low binder content, but it exhibits a higher early age compressive strength value of 45.6 MPa at the age of 3 days. The compressive strength increases linearly with age from 3 to 365 days when exposed to seawater and ambient air. The performance of AASC is very good in the ambient, alkaline environment and seawater compared to other exposure conditions.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 20 March 2024

Malav R. Sanghvi, Karan W. Chugh and S.T. Mhaske

This study aims to synthesize Prussian blue {FeIII4[FeII(CN)6]3} pigment by reacting ferric chloride with different ferrocyanides through the same procedure. The influence of the…

Abstract

Purpose

This study aims to synthesize Prussian blue {FeIII4[FeII(CN)6]3} pigment by reacting ferric chloride with different ferrocyanides through the same procedure. The influence of the ferrocyanide used on resulting pigment properties is studied.

Design/methodology/approach

Prussian blue is commonly synthesized by direct or indirect methods, through iron salt and ferrocyanide/ferricyanide reactions. In this study, the direct, single-step process was pursued by dropwise addition of the ferrocyanide into ferric chloride (both as aqueous solutions). Two batches – (K-PB) and (Na-PB) – were prepared by using potassium ferrocyanide and sodium ferrocyanide, respectively. The development of pigment was confirmed by an identification test and characterized by spectroscopic techniques. Pigment properties were determined, and light fastness was observed for acrylic emulsion films incorporating dispersed pigment.

Findings

The two pigments differed mainly in elemental detection owing to the dissimilar ferrocyanide being used; IR spectroscopy where only (Na-PB) showed peaks indicating water molecules; and bleeding tendency where (K-PB) was water soluble whereas (Na-PB) was not. The pigment exhibited remarkable blue colour and good bleeding resistance in several solvents and showed no fading in 24 h of light exposure though oil absorption values were high.

Originality/value

This article is a comparative study of Prussian blue pigment properties obtained using different ferrocyanides. The dissimilarity in the extent of water solubility will influence potential applications as a colourant in paints and inks. K-PB would be advantageous in aqueous formulations to confer a blue colour without any dispersing aid but unfavourable in systems where other coats are water-based due to their bleeding tendency.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 166