Search results

1 – 10 of 350
Article
Publication date: 13 February 2019

Abdurra’uf Mukhtar Gora, Jayaprakash Jaganathan, Mohammed Parvez Anwar and Hau Y. Leung

The purpose of this paper is to present the results of experimental and theoretical studies on the flexural capacity of reinforced concrete (RC) beams strengthened using…

Abstract

Purpose

The purpose of this paper is to present the results of experimental and theoretical studies on the flexural capacity of reinforced concrete (RC) beams strengthened using externally bonded bi-directional glass fibre reinforced polymer (GFRP) composites and different end anchorage systems.

Design/methodology/approach

A series of nine RC beams with a length of 1,600 mm and a cross-section of 200 mm depth and 100 mm width were prepared and externally strengthened in flexure with bi-directional GFRP composites. These strengthened beams were anchored with three different end anchorage systems namely closed GFRP wraps, GFRP U-wraps and mechanical anchors. All these beams were tested with four-point bending system up to failure. The experimental results are compared with the theoretical results obtained using the relevant design guidelines.

Findings

The experimental results demonstrate a significant increase in the flexural performance of the GFRP strengthened beams with regard to the ultimate load carrying capacity and stiffness. The results also show that GFRP strengthened beams without end anchorages experienced intermediate concrete debonding failure at the GFRP plate end, whereas all the GFRP strengthened beams with different end anchorage systems failed in rupture of GFRP with concrete crushing. The theoretical results revealed no significant difference among the relevant design guidelines with regard to the predicted ultimate moment capacities of the bi-directional GFRP strengthened RC beams. However, the results show that ACI Committee 440 Report (2008) design recommendation provides reasonably acceptable predictions for the ultimate moment capacities of the tested beams strengthened externally with bi-directional GFRP reinforcement followed by FIB Bulletin 14 (2001) and eventually by JSCE (1997).

Originality/value

The research work presented in this manuscript is authentic and could contribute to the understanding of the overall behaviour of RC beams strengthened with FRP and different end anchorage systems under flexural loading.

Details

International Journal of Structural Integrity, vol. 10 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3545

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2003

George K. Stylios

Examines the ninth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

1197

Abstract

Examines the ninth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 15 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 April 2024

Long Liu, Lifeng Wang and Ziwang Xiao

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the…

Abstract

Purpose

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the steel plate at the bottom of RC beams, aiming to solve the problem of over-reinforced RC beams and improve the bearing capacity of RC beams without affecting their ductility.

Design/methodology/approach

In this paper, the finite element model of ESRB was established by ABAQUS. The results were compared with the experimental results of ESRB in previous studies and the reliability of the finite element model was verified. On this basis, parameters such as the width of the steel plate, thickness of the ECC layer, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar were analyzed by the verified finite element model. Based on the load–deflection curve of ESRB, ESRB was discussed in terms of ultimate bearing capacity and ductility.

Findings

The results demonstrate that when the width of the steel plate increases, the ultimate load of ESRB increases to 133.22 kN by 11.58% as well as the ductility index increases to 2.39. With the increase of the damage degree of the original beam, the ultimate load of ESRB decreases by 23.7%–91.09 kN and the ductility index decreases to 1.90. With the enhancement of the cross-sectional area of longitudinal tensile rebar, the ultimate bearing capacity of ESRB increases to 126.75 kN by 6.2% and the ductility index elevates to 2.30. Finally, a calculation model for predicting the flexural capacity of ESRB is proposed. The calculated results of the model are in line with the experimental results.

Originality/value

Based on the comparative analysis of the test results and numerical simulation results of 11 test beams, this investigation verified the accuracy and reliability of the finite element simulation from the aspects of load–deflection curve, characteristic load and failure mode. Furthermore, based on load–deflection curve, the effects of steel plate width, ECC layer thickness, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar on the ultimate bearing capacity and ductility of ESRB were discussed. Finally, a simplified method was put forward to further verify the effectiveness of ESRB through analytical calculation.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 October 2022

Mojtaba Labibzadeh, Farhad Bostan Shirin and Amin Khajehdezfuly

This study aims to investigate the effects of using circular spirals as the longitudinal reinforcing bars on the performance of the concrete beams subjected to four-point bending…

Abstract

Purpose

This study aims to investigate the effects of using circular spirals as the longitudinal reinforcing bars on the performance of the concrete beams subjected to four-point bending load.

Design/methodology/approach

The effects of using circular spirals as the longitudinal reinforcing bars on the performance of the concrete beams subjected to four-point bending load are investigated in this study. Employing circular spirals as the main longitudinal reinforcement is a novel idea presented in this paper. In this regard, a finite element model of the beam with spiral longitudinal reinforcement was developed. After model verification, several configurations of concrete beams reinforced by longitudinal spirals were simulated under the four-point loading condition.

Findings

Obtained results showed that using the longitudinal spirals in place of the conventional longitudinal reinforcing bars can improve the bearing capacity of the concrete beam, but at the same time, increases its ductility unacceptably. In other words, the spirals reduce the initial stiffness of the beam significantly. To solve the problem, the authors decided to use the longitudinal spirals as the auxiliary bars added to the main conventional longitudinal bars in the beams. New gained results were satisfactory. By adding the longitudinal spirals to the conventional bars, not only the bearing capacity of the beam increases between 24% and 63%, but also the initial stiffness and ductility of the beam raises between 11%–29% and 3%–57%, respectively, in comparison to the corresponding beam reinforced with conventional longitudinal bars.

Originality/value

Employing circular spirals as the main longitudinal reinforcement is a novel idea presented in this paper.

Details

International Journal of Structural Integrity, vol. 13 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load…

Abstract

Purpose

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load using the robust and reliable general-purpose finite element (FE) software ANSYS. A parametric study is carried out to analyse the flexural and ductility behaviour of RC beams under various influencing parameters.

Design/methodology/approach

To develop and validate the numerical FE models, a total of four experimentally tested simply supported RC beams are taken from the available literature and two beams are selected from each author. The concrete, steel reinforcements, bond-slip mechanism, loading and supporting plates are modelled using SOLID65, LINK180, COMBIN39 and SOLID185 elements, respectively. The validated models are then used to conduct parametric FE analysis to investigate the effect of concrete compressive strength, percentage of tensile reinforcement, compression reinforcement ratio, transverse shear reinforcement, bond-slip mechanism, concrete compressive stress-strain constitutive models, beam symmetry and varying overall depth of beam on the ultimate load-carrying capacity and ductility behaviour of RC beams.

Findings

The developed three-dimensional FE models can able to capture the load and midspan deflections at critical points, the accurate yield point of steel reinforcements, the formation of initial and progressive concrete crack patterns and the complete load-deflection curves of RC beams up to ultimate failure. From the numerical results, it can be concluded that the FE model considering the bond-slip effect with Thorenfeldt’s concrete compressive stress-strain model exhibits a better correlation with the experimental data.

Originality/value

The ultimate load and deflection results of validated FE models show a maximum deviation of less than 10% and 15%, respectively, as compared to the experimental results. The developed model is also capable of capturing concrete failure modes accurately. Overall, the FE analysis results were found quite acceptable and compared well with the experimental data at all loading stages. It is suggested that the proposed FE model is a practical and reliable tool for analyzing the flexural behaviour of RC members and can be used for performing parametric studies.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 January 2024

Kuleni Fekadu Yadeta, Sudath C. Siriwardane, Tesfaye Alemu Mohammed and Hirpa G. Lemu

Incorporating pre-existing crack in service life prediction of reinforced concrete structures subjected to corrosion is crucial for accurate assessment, realistic modelling and…

Abstract

Purpose

Incorporating pre-existing crack in service life prediction of reinforced concrete structures subjected to corrosion is crucial for accurate assessment, realistic modelling and effective decision-making in terms of maintenance and repair strategies.

Design/methodology/approach

An accelerated corrosion test was conducted by using impressed current method on cylindrical specimens with varying cover thickness and crack width. Mechanical properties of the specimens were evaluated by tensile tests.

Findings

The results show that, the pre-cracked samples exhibited shorter concrete cover cracking times, particularly with wider cracks when compared to the uncracked samples. Moreover, the load-bearing capacity of the reinforcement bars decreased owing to the pre-cracks, causing structural deflection and a shortened yield plateau. However, the ductility index remained consistent across all sample types, implying that the concrete had good overall ductility. Comparing the results of the non-corroded rebar and corroded rebar samples, the maximum reduction in the yield load was 25.22%, whereas the maximum reduction in the ultimate load was 26.23%. The simple mathematical model proposed in this study provides a reliable method for predicting the chloride ion diffusion coefficient in cracked concrete of existing reinforced concrete structures.

Originality/value

A simple mathematical model was proposed for evaluation of the equivalent chloride ion diffusion coefficient considering crack width, average crack spacing and crack extending lengths for cracked reinforced concrete structures, which is used to incorporate existing crack in service life prediction models.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 February 2019

Charis Apostolopoulos, Argyro Drakakaki and Maria Basdeki

As it is widely known, corrosion is a major deterioration factor for structures which are located on coastal areas. Corrosion has a great impact on both the durability and seismic…

Abstract

Purpose

As it is widely known, corrosion is a major deterioration factor for structures which are located on coastal areas. Corrosion has a great impact on both the durability and seismic performance of reinforced concrete structures. In the present study, two identical reinforced concrete columns were constructed and mechanical tests were organized to simulate seismic conditions. Prior to the initiation of the mechanical tests, the base of one of the two columns was exposed to predetermined accelerated electrochemical corrosion (at a height of 60 cm from the base). After the completion of the experimental loading procedure, the hysteresis curves – for unilateral and bilateral loadings – of the two samples were presented and analyzed (in terms of strength, displacement and dissipated energy). The paper aims to discuss this issue.

Design/methodology/approach

In the present study, two identical reinforced concrete columns were constructed and mechanical tests were organized to simulate seismic conditions. The tests were executed under the combination of a constant vertical force with horizontal, gradually increasing, cyclic loads. The implemented displacements, of the free end of the column, ranged from 0.2 to 5 percent. Prior to the initiation of the mechanical tests, the base of one of the two columns was exposed to predetermined accelerated electrochemical corrosion (at a height of 60 cm from the base). After the completion of the experimental loading procedure, the hysteresis curves of the two samples were presented and analyzed (in terms of strength, displacement and dissipated energy).

Findings

Analyzing the results, for both unilateral and bilateral loadings, a significant reduction of the seismic performance of the corroded column was highlighted. The corrosion damage imposed on the reference column resulted in the dramatic decrease of its energy reserves, even though an increase in ductility was recorded. Furthermore, more attention was paid to the consequences of the uneven corrosion damage, recorded on the steel bars examined, on ductility, hysteretic behavior and damping ratio.

Originality/value

In the present paper, the influence of the corrosion effects on the cyclic response of structural elements was presented and analyzed. The simulation of the seismic conditions was achieved by imposing, at the same time, a constant vertical force and horizontal, gradually increasing, cyclic loads. Finally, an evaluation of the performance of a column, under both unilateral and bilateral loadings, took place before and after corrosion.

Details

International Journal of Structural Integrity, vol. 10 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 April 2015

Sergiu Andrei Baetu, A H Barbat and Ioan Petru Ciongradi

The purpose of this paper is to investigate a dissipative reinforced concrete structural wall that can improve the behavior of a tall multi-storey building. The main objective is…

Abstract

Purpose

The purpose of this paper is to investigate a dissipative reinforced concrete structural wall that can improve the behavior of a tall multi-storey building. The main objective is to evaluate the damage of a dissipative wall in comparison with that of a solid wall.

Design/methodology/approach

In this paper, a comparative nonlinear dynamic analysis between a dissipative wall and a solid wall is performed by means of SAP2000 software and using a layer model. The solution to increase the seismic performance of a reinforced concrete structural wall is to create a slit zone with short connections. The short connections are introduced as a link element with multi-linear pivot hysteretic plasticity behavior. The behavior of these short connections is modeled using the finite element software ANSYS 12. In this study, the authors propose to evaluate the damage of reinforced concrete slit walls with short connections using seismic analysis.

Findings

Using the computational model created in the second section of the paper, a seismic analysis of a dissipative wall from a multi-storey building was done in the third section. From the results obtained, the advantages of the proposed model are observed.

Originality/value

A simple computational model was created that consume low processing resources and reduces processing time for a dynamic pushover analysis. Unlike other studies on slit walls with short connections, which are focussed mostly on the nonlinear dynamic behavior of the short connections, in this paper the authors take into consideration the whole structural system, wall and connections.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 December 2021

Malika Belhocine, Youcef Bouafia, Mohand Said Kachi and Karim Benyahi

The calculation and design of the structures are carried out with the aim of obtaining a sufficiently ductile behavior to allow the structure to undergo displacements, without…

Abstract

Purpose

The calculation and design of the structures are carried out with the aim of obtaining a sufficiently ductile behavior to allow the structure to undergo displacements, without risk of sudden breaks or loss of stability. The purpose of this study is to develop and validate a computer program (Thin beam2), allowing the modeling and simulation of the nonlinear behavior of reinforced concrete elements, on the other part, it is estimating the local and global ductility of the sections or elements constituting these structures.

Design/methodology/approach

The authors present two nonlinear analysis methods to carry out a parametric study of the factors influencing the local and global ductility of reinforced concrete structures. The first consists in evaluating the nonlinear behavior at the level of the cross-section of the reinforced concrete elements used in the elaborate Sectenol 1 program, it allows us to have the local ductility. The second, allows us to evaluate the nonlinear behavior of the element used in the modified thin beam 2 program, it allows us to estimate the overall ductility of the element.

Findings

The validation results of the Thin beam2 program are very satisfactory, by conferring the analytic and experimental results obtained by various researchers and the parametric study shows that each factor such as the compressive strength of the concrete has a favorable effect on ductility. Conversely, the normal compression force and the high resistance of tensioned reinforcements adversely affect ductility.

Originality/value

The reliability of the two programs lies in obtaining the local and global ductility of reinforced concrete structures because the calculation and design of the structures are carried out with the aim of obtaining ductile behavior without risk of breakage and instability.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 350