Search results

1 – 10 of 31
Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 28 November 2022

Dhananjay A. Patil, Vidhukrishnan Ekambaram Naiker, Ganesh A. Phalak, Karan W. Chugh and S.T. Mhaske

This study aims to synthesize two different benzoxazines (Bz) monomers using bio-based and petroleum-based primary amines, respectively, and they have been compared to study their…

198

Abstract

Purpose

This study aims to synthesize two different benzoxazines (Bz) monomers using bio-based and petroleum-based primary amines, respectively, and they have been compared to study their thermal and mechanical performances.

Design/methodology/approach

A bio-based bisphenol, Divanillin (DiVa), was formed by reacting two moles of vanillin with one mole of ethylenediamine (EDA) which was then reacted firstly with paraformaldehyde and EDA to form the benzoxazine DiVa-EDA-Bz, and secondly with paraformaldehyde and furfuryl amine (FFA) to form the benzoxazine DiVa-FFA-Bz. The molecular structure and thermal properties of the benzoxazines were characterized by fourier transform infrared spectroscopy and nuclear magnetic resonance (1H,13C) spectroscopies, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. The benzoxazines were further coated on mild steel panels to evaluate their mechanical properties and chemical resistance.

Findings

The DSC results of DiVa-FFA-Bz showed two exothermic peaks related to crosslinking compared to the one in DiVa-EDA-Bz. The DiVa-FFA-Bz also showed a higher heat of polymerization than DiVa-EDA-Bz. The TGA results showed that DiVa-FFA-Bz exhibited higher thermal stability with a residual char of 54.10% than 43.24% for DiVa-EDA-Bz. The chemical resistance test results showed that DiVa-FFA-Bz showed better chemical resistance and mechanical properties due to its higher crosslinking density.

Originality/value

This study shows the use of bio-based materials, vanillin and FFA, for synthesizing a benzoxazine resin and its application at high temperatures.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 September 2022

A. Gayathri, P. Varalakshmi and M. G. Sethuraman

This study aims to develop multifunctional, namely, superhydrophobic, flame-retardant and antibacterial, coatings over cotton fabric, using casein as green-based flame-retardant…

Abstract

Purpose

This study aims to develop multifunctional, namely, superhydrophobic, flame-retardant and antibacterial, coatings over cotton fabric, using casein as green-based flame-retardant and silver nanoparticles as antibacterial agent by solution immersion method.

Design/methodology/approach

The cotton fabric is first coated with casein to make it flame-retardant. AgNPs synthesized using Cinnamomum zeylanicum bark extract is coated over the casein layer. Finally, stearic acid is used to coat the cotton to make it superhydrophobic. X-ray diffraction, transmission electron microscopy analysis and ultraviolet-visible spectroscopy are used to investigate the produced AgNPs. The as-prepared multifunctional cotton is characterized by scanning electron microscopy, energy dispersive X-ray analysis and attenuated total reflection-infrared studies. Flame test, limiting oxygen index test and thermogravimetric analyzer studies have also been performed to study the flame-retardant ability and thermal stability of treated fabric, respectively. The antibacterial effect of the coatings is evaluated by disc-diffusion technique. Water contact angle is determined to confirm the superhydrophobic nature of cotton fabric.

Findings

The outcomes of this study showed that the prepared multifunctional cotton fabric had maximum contact angle of greater than 150° with good flame retardancy, high thermal stability, greater washing durability and high antibacterial activity against the growth of Pseudomonas aeruginosa and Acinetobacter indicus. Additionally, the as-prepared superhydrophobic cotton showed an excellent oil–water separation efficiency.

Research limitations/implications

The trilayered multifunctional cotton fabric has limiting washing durability up to 20 washing cycles. Treated functional fabric can be used as an antibacterial, therapeutic, water repellent and experimental protective clothing for medical, health care, home curtains and industrial and laboratory purposes.

Originality/value

The study brings out the robustness of this method in the development of multifunctional cotton fabrics.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 24 May 2023

Tuna Uysaler, Pelin Altay and Gülay Özcan

In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high…

Abstract

Purpose

In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high water, energy and time consumption. Nowadays, laser fading, which is a computer-controlled, dry, ecological finishing method, is preferred in the denim fading process. The purpose of this study is to observe the effects of chemical pretreatment applications on laser-faded denim fabric in terms of color and mechanical properties. To eliminate the enzyme washing process in denim fading and to minimize the disadvantages of laser fading, such as decreased mechanical properties and increased fabric yellowness, various chemical pretreatment applications were applied to the denim fabric before laser fading, followed by simple rinsing instead of enzyme washing.

Design/methodology/approach

Two different indigo-dyed, organic cotton denim fabrics with different unit weights were exposed to pretreatment processes and then laser treatment, followed by simple rinsing. Polysilicic acid, boric acid, borax and bicarbonate were used for pretreatment processes, and laser treatment was carried out under optimized laser parameters (40 dpi resolution and 300 µs pixel time). Tensile strength was tested, and color values (CIE L*, a*, b*, ΔE*, C* and h), color yield (K/S), yellowness and whiteness indexes were measured to identify the color differences.

Findings

Before laser fading, 30 g/L and 40 g/L polysilicic acid pretreatments for sulfur-indigo-dyed fabric and a mixture of 10 g/L boric acid and 10 g/L borax pretreatments for the fabric only indigo-dyed were recommended for the laser fading with sufficient mechanical properties and good color values.

Originality/value

With the chemical pretreatments defined in this study, it was possible to reduce yellowness and maintain the mechanical properties after laser fading, thus minimizing the disadvantages of laser treatment and also eliminating enzyme washing.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 23 November 2023

Muhammad Saiful Islam

After the fall of Burma on 10 March 1942 the British government extensively implemented scorched-earth policies in Bengal like denial of rice and boats. The British government had…

Abstract

Purpose

After the fall of Burma on 10 March 1942 the British government extensively implemented scorched-earth policies in Bengal like denial of rice and boats. The British government had inadequate defense equipment to resist Japanese attack in Bengal. After the Japanese invasion supply of Burmese rice suddenly stopped. Faridpur district used to import rice from Burma. The Burmese conquest created an immediate and serious crisis for several rice imported districts and coastal districts of Bengal. Hence, none of the districts of East Bengal could escape its brutal clutches and severity recorded in Chittagong, Dhaka, Faridpur, Tripura, Noakhali, Bakargonj and so on.

Design/methodology/approach

Among the affected districts of Bengal, Faridpur has been chosen as study area due to severity of famine. This study addresses the famine scenario of Faridpur. Data has been collected from primary and secondary sources. Content Analysis Research method is used to test reliability and validity of the data. Historical Analysis Research method has been followed in this study.

Findings

Finding of the study shows that the government relief issues, ignorance of warnings, political nepotism and denial policy of British government intensified the famine of Faridpur district. The wartime tactics adopted by the colonial government aggravated the famine situation. This article has shed light on the government war time policy, activity and some impacts of British decline in Burma that fueled the famine in Faridpur district.

Originality/value

This study is my original research work and has not been published else where.

Details

Southeast Asia: A Multidisciplinary Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1819-5091

Keywords

Article
Publication date: 15 February 2024

Manager Rajdeo Singh, Aditya Prakash Kanth, Madhuri Sawant and Rajesh Ragde

The present work highlights the outstanding properties of Cannabis sativa that can be harnessed for various utilitarian functions and its climate friendly properties.

Abstract

Purpose

The present work highlights the outstanding properties of Cannabis sativa that can be harnessed for various utilitarian functions and its climate friendly properties.

Design/methodology/approach

In this paper, the authors reviewed current research on all possible utilities from household work to manufacturing of various products that are environmentally sustainable. The authors have presented some of their research on this materials and also exploration of hemp as an archaeological material based on the findings from wall paintings of Ellora caves.

Findings

There are references of hemp use in mixing with earthen/lime plaster of western Indian monuments. Around 1,500 years of Ellora’s earthen plaster, despite harsh climatic conditions, survived due to the presence of hemp in the plaster that adds durability, fibrosity and its capacity to ward off insects and control humidity. Furthermore, the outstanding quality of Cannabis as carbon sequestrant was harnessed by Indians of ancient times in Ellora mural paintings.

Research limitations/implications

This work discusses some relevant literature on the potential use of hempcrete aligned with Agenda 2030 of sustainable development goals.

Practical implications

There are several research going on in producing sustainable materials using hemp that have the least environmental impact and can provide eco-friendly solutions.

Social implications

The authors impress upon the readers about multifarious utility of the hemp and advices for exploration of this material to address many environmental issues.

Originality/value

This paper presents both review of the existing papers and some components coming directly from their laboratory investigations.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 12 February 2024

Bataa Sayed Mohamed Mazen, Badawi Mohamed Ismail, Rushdya Rabee Ali Hassan, Mahmoud Ali and Wael S. Mohamed

The purpose of this study is to detect the effect of some natural cellulosic polymers in their nano forms with the addition of zinc oxide nanoparticles on restoring the lost…

Abstract

Purpose

The purpose of this study is to detect the effect of some natural cellulosic polymers in their nano forms with the addition of zinc oxide nanoparticles on restoring the lost mechanical strength of degraded papyrus without any harmful effects on the inks.

Design/methodology/approach

In the current study, the USB digital microscopy, scanning electron microscope, measurement of mechanical properties (tensile and elongation), pH measurement, color change and infrared spectroscopy were undertaken for the samples before and after treatment and aging.

Findings

In the current study, the USB digital microscopy, scanning electron microscope, measurement of mechanical properties (tensile and elongation), pH measurement, color change and infrared spectroscopy were undertaken for the samples before and after treatment and aging.

Originality/value

The effect of strengthening materials was studied on cellulose and carbon ink, which makes this study closer to reality as the manuscript is the consistent structure of cellulose and inks, whereas most of the literature stated the impact of consolidation materials on the strengthening the cellulosic supports without attention to their impact on inks.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 February 2024

Sabiha Sezgin Bozok

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products…

Abstract

Purpose

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products. This study aims to determine the optimum conditions to increase abrasion resistance, to provide self-cleaning properties of denim fabrics and to examine the effects of these applications on other physical properties.

Design/methodology/approach

The denim samples were first treated with nonionic surfactant to increase their wettability. Three different amounts of the polymer dispersion and two different pH levels were selected for the experimental design. The finishing process was applied to the fabrics with pad-dry-cure method.

Findings

The presence of the coatings and the adhesion of TiO2 NPs to the surfaces were confirmed by scanning electron microscope and Fourier transform infrared spectroscopy analysis. It was ascertained that the most appropriate self-crosslinking acrylate amount and ambient pH level is 10 mL and “2”, respectively, for providing increased abrasion resistance (2,78%) and enhanced self-cleaning properties (363,4%) in the denim samples. The coating reduced the air permeability and softness of the denim samples. Differential scanning calorimetry and thermogravimetry analysis results showed that the treatments increased the crystallization temperatures and melting enthalpy values of the denim samples. Based on the thermal test results, it is clear that mass loss of the denim samples at 370°C decreased as the amount of self-crosslinking acrylate increased (at pH 3).

Originality/value

This study helped us to find out optimum amount of self-crosslinking acrylate and proper pH level for enhanced self-cleaning and abrasion strength on denim fabrics. With this finishing process, an environmentally friendly and long-life denim fabric was designed.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 October 2023

Goutam Kumar Jana, Sumit Bera, Ribhu Maity, Tithi Maity, Arjun Mahato, Shibayan Roy, Hemakesh Mohapatra and Bidhan Chandra Samanta

The manufacture of polymer composites with a lower environmental footprint requires incorporation of sustainably sourced components. In addition, the incorporation of novel…

Abstract

Purpose

The manufacture of polymer composites with a lower environmental footprint requires incorporation of sustainably sourced components. In addition, the incorporation of novel components should not compromise the material properties. The purpose of this paper is to demonstrate the use of a synthetic amine functional toluidine acetaldehyde condensate (AFTAC) as a modifier for fiber-reinforced epoxy composites. One of the fiber components was sourced from agricultural byproducts, and glass fiber was used as the fiber component for comparison.

Design/methodology/approach

The AFTAC condensate was synthesized via an acid-catalyzed reaction between o-toluidine and acetaldehyde. To demonstrate its efficacy as a toughening agent for diglycidyl ether bisphenol A resin composites and for the comparison of reinforcing materials of interest, composites were fabricated using a natural fiber (mat stick) and a synthetic glass fiber as the reinforcing material. A matched metal die technique was used to fabricate the composites. Composites were prepared and their mechanical and thermal properties were evaluated.

Findings

The inclusion of AFTAC led to an improvement in the mechanical strengths of these composites without any significant deterioration of the thermal stability. It was also observed that the fracture strengths for mat stick fiber-reinforced composites were lower than that of glass fiber-reinforced composites.

Originality/value

To the best of the authors’ knowledge, the use of the AFTAC modifier as well as incorporation of mat stick fibers in epoxy composites has not been demonstrated previously.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 March 2023

Walid E. Elgammal, Essam M. Eliwa, Hosni A. Goomaa, Medhat E. Owda and H. Abd El-Wahab

This paper aims to focus on the synthesis of the macrocyclic complexes (Cu and Zn) and their applications as anticorrosive materials in epoxy paint formulation for surface coating…

Abstract

Purpose

This paper aims to focus on the synthesis of the macrocyclic complexes (Cu and Zn) and their applications as anticorrosive materials in epoxy paint formulation for surface coating application.

Design/methodology/approach

A selected macrocyclic Cu(II) and Zn(II) complexes were prepared via template synthesis and characterized using Fourier transform infrared, thermal gravimetric analysis, scanning electron microscope, flexibility, hardness and adhesion of coating films prepared using epoxy paint.

Findings

The corrosion resistance of the epoxy-painted films was improved due to the incorporation of the Zn and Cu complexes into the formulation.

Originality/value

It was found that the metal complex-based formulation with Cu(II) and Zn(II) had outperformed the sample blank.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 31