Search results

1 – 10 of 337
Article
Publication date: 3 September 2019

Selin Hanife Eryuruk

The liquid water and water vapour transfer properties of fabrics play an important and decisive role in determining thermal comfort properties of clothing systems. The purpose of…

Abstract

Purpose

The liquid water and water vapour transfer properties of fabrics play an important and decisive role in determining thermal comfort properties of clothing systems. The purpose of this paper is to analyse the effects of fabric composition (98 percent cotton–2 percent elastane and 100 percent cotton) and finishing treatments (rigid, resin, bleaching and softening) on the wicking, drying and water vapour permeability (WVP) properties of denim fabrics.

Design/methodology/approach

The research design for this study consists of experimental study. Two fabric compositions (98 percent cotton–2 percent elastane and 100 percent cotton) and four finishing treatments (rigid, resin, bleaching and softening) were evaluated to see the effects of elastane and finishing treatments on wicking, drying and WVP properties of woven denim fabrics. Results were analysed statistically.

Findings

Experimental results showed that the transfer wicking, drying and WVP values of denim fabrics were significantly influenced by fabric weight, fibre composition and finishing treatments.

Practical implications

The wicking ability of sweat from the skin to the outer environment of a skin contact fabric layer is the primary requirement.

Originality/value

As a result of the literature review, it was seen that there are some studies in the literature about comfort properties of denim fabrics, but there is no study concerning the water vapour transmission, wicking and drying properties of denim fabrics.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 January 2000

Yi Li and Lei Yao

The aim of this paper is to provide a statistical review of the Chinese denim industry, which covers the following topics: Chinese production and production capacity of denim

Abstract

The aim of this paper is to provide a statistical review of the Chinese denim industry, which covers the following topics: Chinese production and production capacity of denim yarns, fabrics and apparels; Chinese domestic consumption of denim yarns, fabrics and apparels; Chinese denim export to the USA, EEC and Hong Kong; and finally the geographic distribution of the Chinese denim industry — yarn production, fabric production and apparel production.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. 4 no. 1
Type: Research Article
ISSN: 1361-2026

Keywords

Article
Publication date: 2 November 2015

Mouna Gazzah, Boubaker Jaouachi, Laurence Schacher, Dominique Charles Adolphe and Faouzi Sakli

The purpose of this paper is to predict the appearance of denim fabric after repetitive uses judging the denim cloth behavior and performance in viewpoint of bagging ability…

Abstract

Purpose

The purpose of this paper is to predict the appearance of denim fabric after repetitive uses judging the denim cloth behavior and performance in viewpoint of bagging ability. Hence, it attempts to carry out the significant inputs and outputs that have an influence on the bagging behaviors using the Principal Component Analysis (PCA) technique. In this study, the Kawabata Evaluation System parameters such as the frictional characteristics, the bending, compression, tensile and shear parameters are investigated to propose a model highlighting and explaining their impacts on the different bagging properties. To improve the obtained results, the selected significant inputs are also analyzed within their bagging properties using Taguchi experimental design. The linear regressive models prove the effectiveness of the PCA method and the obtained findings.

Design/methodology/approach

To investigate the mechanical properties and their contributions on the bagging characteristics, some denim fabrics were collected and measured thanks to the Kawabata evaluation systems (KES-FB1, KES-FB2, KES-FB3 and KES-FB4). These bagging properties were further analyzed applying the method of PCA to acquire factor patterns that indicate the most important fabric properties for characterizing the bagging behaviors of different studied denim fabric samples. An experimental design type Taguchi was, hence, applied to improve the results. Regarding the obtained results, it may be concluded that the PCA method remained a powerful and flawless technique to select the main influential inputs and significant outputs, able to define objectively the bagging phenomenon and which should be considered from the next researches.

Findings

According to the results, there are good relationships between the Kawabata input parameters and the analyzed bagging properties of studied denim fabrics. Indeed, thanks to the PCA, it is probably easy to reduce the number of the influent parameters for three reasons. First, applying this technique of selection can help to select objectively the most influential inputs which affect enormously the bagged fabrics. Second, knowing these significant parameters, the prediction of denim fabric bagging seems fruitful and can undoubtedly help researchers explain widely this complex phenomenon. Third, regarding the findings mentioned, it seems that the prevention of this aesthetic phenomenon appearing in some specific zones of denim fabrics will be more and more accurate.

Practical implications

This study is interesting for denim consumers and industrial applications during long and repetitive uses. Undoubtedly, the denim garments remained the largely used and consumed, hence, this particularity proves the necessity to study it in order to evaluate the bagging phenomenon which occurs as function of number of uses. Although it is fashionable to have bagging, the denim fabric remains, in contrast with the worsted ones, the most popular fabric to produce garments. Moreover, regarding this characteristic, the large uses and the acceptable value of denim fabrics, their aesthetic appearance behavior due to bagging phenomenon can be analyzed accurately because compared to worsted fabrics, they have a high value and the repetitive tests to investigate widely bagged zones may fall the industrial. The paper has practical implications in the clothing appearance and other textile industry, especially in the weaving process when friction forms (yarn-to-yarn, yarn-to-metal frictions) and stresses are drastic. This can help understanding why residual bagging behavior remained after garment uses due to the internal stress and excessive extensions. Regarding the selected influential inputs and outputs relative to bagging behaviors, there are some practical implications that have an impact on the industrial and researchers to study objectively the occurrence of this aesthetic phenomenon. Indeed, this study discusses the significance of the overall inputs; their contributions on the denim fabric bagged zones aims to prevent their ability to appear after uses. Moreover, the results obtained regarding the fabric mechanical properties can be useful to fabric and garment producers, designers and consumers in specifying and categorizing denim fabric products, insuring more denim cloth use and controlling fabric value. For applications where the subjective view of the consumer is of primary importance, the KES-FB system yields data that can be used for evaluating fabric properties objectively and prejudge the consumer satisfaction in viewpoint of the bagging ability. Therefore, this study shows that by measuring shear, tensile and frictional parameters of KES-FB, it may be possible to evaluate bagging properties. However, it highlights the importance and the significance of some inputs considered influential or the contrast (non-significant) in other researches.

Originality/value

This work presents the first study analyzing the bagged denim fabric applying the PCA technique to remove the all input parameters which are not significant. Besides, it deals with the relationship developed between the mechanical fabric properties (tensile, shear and frictional stresses) and the bagging properties behavior. To improve these obtained relationships, for the first time, the regression technique and experimental design type Taguchi analysis were both applied. Moreover, it is notable to mention that the originality of this study is to let researchers and industrials investigate the most influential inputs only which have a bearing on the bagging phenomenon.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 September 2001

Yi Li, Lei Yao and Richard M. Jones

As a world leader in the textiles and clothing trade, Hong Kong has played an important role in world denim products trade. To obtain a sound understanding of the current status…

Abstract

As a world leader in the textiles and clothing trade, Hong Kong has played an important role in world denim products trade. To obtain a sound understanding of the current status and position of Hong Kong in the world denim trade, the authors carried out a comprehensive statistical survey of the Hong Kong denim industry. This paper reports detailed analyses on the production, sales and trade of denim products in Hong Kong. The analysis on trade covers imports, domestic exports and re‐exports of denim fabric and apparel products.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. 5 no. 3
Type: Research Article
ISSN: 1361-2026

Keywords

Article
Publication date: 10 March 2022

Abenezer Fikre Hailemariam and Nuredin Muhammed

The purpose of this study is to investigate the mechanical properties of denim fabrics constructed from ring-spun and open-end rotor spun yarns.

Abstract

Purpose

The purpose of this study is to investigate the mechanical properties of denim fabrics constructed from ring-spun and open-end rotor spun yarns.

Design/methodology/approach

Yarns of 10s Ne count using cotton fibers were spun using the ring and open-end rotor spinning technologies. The yarns were used to produce a denim fabric on an air-jet loom with a 3/1 twill weave structure. Mechanical tests – tensile strength, tear strength, abrasion resistance and pilling resistance – of denim fabrics were evaluated. The test results were analyzed using analysis of variance with the help of Software Package for Social Sciences.

Findings

Denim fabrics made by using ring-spun yarns exhibited better tensile and tear strength properties than denim fabrics made by using open-end rotor spun yarns. On the contrary, denim produced using open-end rotor yarns have better abrasion resistance, pilling resistance and air permeability than those produced using ring-spun yarns.

Originality/value

Both spinning techniques have a significant influence on the properties of denim fabrics. Whenever better tensile and tear strength is required, it is better to use ring-spun yarns, while if the requirement is better abrasion resistance and pilling resistance with high air permeability, then open-end rotor spun yarns shall be used.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 19 February 2024

Sabiha Sezgin Bozok

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products…

Abstract

Purpose

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products. This study aims to determine the optimum conditions to increase abrasion resistance, to provide self-cleaning properties of denim fabrics and to examine the effects of these applications on other physical properties.

Design/methodology/approach

The denim samples were first treated with nonionic surfactant to increase their wettability. Three different amounts of the polymer dispersion and two different pH levels were selected for the experimental design. The finishing process was applied to the fabrics with pad-dry-cure method.

Findings

The presence of the coatings and the adhesion of TiO2 NPs to the surfaces were confirmed by scanning electron microscope and Fourier transform infrared spectroscopy analysis. It was ascertained that the most appropriate self-crosslinking acrylate amount and ambient pH level is 10 mL and “2”, respectively, for providing increased abrasion resistance (2,78%) and enhanced self-cleaning properties (363,4%) in the denim samples. The coating reduced the air permeability and softness of the denim samples. Differential scanning calorimetry and thermogravimetry analysis results showed that the treatments increased the crystallization temperatures and melting enthalpy values of the denim samples. Based on the thermal test results, it is clear that mass loss of the denim samples at 370°C decreased as the amount of self-crosslinking acrylate increased (at pH 3).

Originality/value

This study helped us to find out optimum amount of self-crosslinking acrylate and proper pH level for enhanced self-cleaning and abrasion strength on denim fabrics. With this finishing process, an environmentally friendly and long-life denim fabric was designed.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 April 2023

Meenakshi Ahirwar and Bijoya Kumar Behera

Denim fabric has become a wardrobe staple due to its versatility to be worn in a variety of fashions. This paper aims to study denim fabrics to understand their unique hand by…

64

Abstract

Purpose

Denim fabric has become a wardrobe staple due to its versatility to be worn in a variety of fashions. This paper aims to study denim fabrics to understand their unique hand by developing a hand evaluation system using computational method. Also, the effect of various washes was studied on the hand and surface morphology of denim fabrics.

Design/methodology/approach

Five different denim samples were manufactured with various washing treatments. The Kawabata Evaluation System was used to measure the low stress mechanical properties. Computation method was used to develop hand equations using multiple regression technique in the MS Excel software. The correlation coefficient analysis was done to determine the authenticity of the developed equations. Five primary hand attributes such as softness, smoothness, fullness, flexibility and stretchability were shortlisted by a panel of judges that influence the fabric handle.

Findings

The correlation coefficient between subjective and computational total hand values with thermal properties and without thermal properties was 0.88 and 0.85, respectively. The enzymatic wash fabric has the highest total hand value followed by the acid, bleach and stone-washed fabrics.

Originality/value

Although the hand evaluation system is available for conventional textiles like suiting and shirting fabrics, the method to predict fabric hand of non-conventional textiles such as denim fabrics remains an unexplored topic. The stresses acting on denim fabrics are completely different. Therefore, to the best of the author’s knowledge, a novel attempt has been made in this research work to develop a computational model to predict the total hand value of denim fabrics.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 11 February 2019

Selin Hanife Eryuruk

The main factors affecting consumers when selecting denim garments are aesthetic, appearance and fashion. Besides these factors, comfort and performance properties of the denim

Abstract

Purpose

The main factors affecting consumers when selecting denim garments are aesthetic, appearance and fashion. Besides these factors, comfort and performance properties of the denim garments during usage are very important. The purpose of this paper is to determine the effects of different finishing processes on the performance properties of 100 percent cotton and 98 percent cotton+2 percent elastane denim fabrics.

Design/methodology/approach

The research design for this study consists of experimental study. In order to evaluate the effects of finishing on the performance properties of fabrics, eight types of fabrics were selected for evaluation. Rigid, resin, bleaching and softening type fabrics with and without elastane were analyzed statistically.

Findings

The results obtained in the study clearly showed that the types of finishing and elastane fiber in the fabric structure had a significant influence on mechanical and comfort properties of denim fabrics.

Originality/value

As a result of the literature review, it was seen that there were limited studies concerning mechanical, functional and comfort properties of denim fabrics together. In this study, the effects of finishing processes on the tear strength, stiffness, drape, mechanical and thermal comfort characteristics were deeply evaluated.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 June 2022

Fareha Asim and Farhana Naeem

The textile sector is moving towards new technologies, where the application of nanotechnology is offering fabrics with multifunctional properties making fabric odourless…

Abstract

Purpose

The textile sector is moving towards new technologies, where the application of nanotechnology is offering fabrics with multifunctional properties making fabric odourless, hydrophobic, durable and self-cleaning. This aim of this research is to investigate self-cleaning ability of denim fabric with the application of zinc oxide nanoparticles (ZnO NPs) synthesized naturally. The primary focus of this investigation is achieving sustainability mark through green synthesis of ZnO NPs.

Design/methodology/approach

In this analysis, ZnO NPs being one of the metal oxides exhibiting self-cleaning, UV-protective and anti-microbial properties were synthesized naturally using Azadirachta Indica leaves. The prepared NPs were characterized by using X-ray diffraction and scanning electron microscopy analyses confirming their size and crystalline structure. Different formulations were investigated with varying concentration of zinc oxide and auxiliaries onto the denim fabric using pad-dry-cure application technique.

Findings

XRD analysis confirmed the successful green synthesis of ZnO NPs. SEM analysis revealed the homogeneous and hexagonal wurtzite NPs deposition on the denim fabric. It was ascertained that with 5% ZnO NPs and 7% Binder concentrations, the formulation resulted in a smooth and even layer on the denim fabric maintaining the appearance and feel at the same time offers appreciable grading (Grade 4) against the stringent stains of Ketchup, Coffee, Grape and Orange Juice with insignificant change in tensile strength.

Originality/value

In this study, self-cleaning attributes of denim fabric with zinc oxide nano formulations of different composition was studied to achieve promising functional properties in a single step not studied earlier.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 May 2023

Tuna Uysaler, Pelin Altay and Gülay Özcan

In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high…

Abstract

Purpose

In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high water, energy and time consumption. Nowadays, laser fading, which is a computer-controlled, dry, ecological finishing method, is preferred in the denim fading process. The purpose of this study is to observe the effects of chemical pretreatment applications on laser-faded denim fabric in terms of color and mechanical properties. To eliminate the enzyme washing process in denim fading and to minimize the disadvantages of laser fading, such as decreased mechanical properties and increased fabric yellowness, various chemical pretreatment applications were applied to the denim fabric before laser fading, followed by simple rinsing instead of enzyme washing.

Design/methodology/approach

Two different indigo-dyed, organic cotton denim fabrics with different unit weights were exposed to pretreatment processes and then laser treatment, followed by simple rinsing. Polysilicic acid, boric acid, borax and bicarbonate were used for pretreatment processes, and laser treatment was carried out under optimized laser parameters (40 dpi resolution and 300 µs pixel time). Tensile strength was tested, and color values (CIE L*, a*, b*, ΔE*, C* and h), color yield (K/S), yellowness and whiteness indexes were measured to identify the color differences.

Findings

Before laser fading, 30 g/L and 40 g/L polysilicic acid pretreatments for sulfur-indigo-dyed fabric and a mixture of 10 g/L boric acid and 10 g/L borax pretreatments for the fabric only indigo-dyed were recommended for the laser fading with sufficient mechanical properties and good color values.

Originality/value

With the chemical pretreatments defined in this study, it was possible to reduce yellowness and maintain the mechanical properties after laser fading, thus minimizing the disadvantages of laser treatment and also eliminating enzyme washing.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 337