Search results

1 – 10 of 20
Article
Publication date: 8 May 2024

Manager Singh, Deepak Anand Gupta and Dr Madhuri Sawant

The purpose of this study is to investigate environmental factors impacting Ajanta mural deterioration, assessing global tourism effects and visitor conduct on cave environment…

Abstract

Purpose

The purpose of this study is to investigate environmental factors impacting Ajanta mural deterioration, assessing global tourism effects and visitor conduct on cave environment and murals. This study recognizes stakeholder roles in conservation, providing data-driven insights to guide institutions like the Archaeological Survey of India. The objective is sustainable tourism practices to balance public access with mural preservation for future generations.

Design/methodology/approach

Over 25 years, Ajanta Caves' visitors doubled, impacting microclimatic conditions for ancient murals. This study assesses visitor impact to establish a regime and determine carrying capacity, considering temperature, humidity and pollution. Challenges arise from quantifying capacity because of variables. This research informs global tourism and heritage conservation, offering methodologies applicable to cultural sites worldwide.

Findings

This study examines environmental impacts on mural preservation in Ajanta Caves, including humidity, microbial growth, sunlight exposure, air quality and tourist presence. Tourist influx escalates CO2 levels, directly endangering murals. Concerns about particulate matter, especially during visits, emphasize the need for data-driven decision-making and modern technology use to protect Ajanta Caves' artwork, crucial because of its global significance and tourism-related vulnerabilities.

Social implications

This study carries substantial social implications with a global resonance. The active engagement of the local community and tourism stakeholders in conserving and promoting the Ajanta Caves fosters empowerment, igniting a sense of pride, ownership and responsibility among residents and ensuring sustainable enjoyment of cultural heritage while safeguarding it for future generations. In addition, there will be socioeconomic benefits to local residents such as employment opportunities as tour operators, tour guides, hospitality staff, artisans and souvenir shopkeepers.

Originality/value

This study integrates art conservation, environmental science, cultural heritage preservation and social aspects to address global tourism challenges. Focusing on a site of worldwide significance, this study offers practical strategies for artwork preservation, tourism management and environmental concerns. These recommendations provide real-world solutions applicable to heritage sites globally, bridging scientific analysis with social and cultural insights.

目的

本研究调查了影响阿詹塔壁画退化的环境因素, 评估了全球旅游业和游客行为对洞穴环境和壁画的影响。它承认利益相关者在保护中的作用, 为印度考古调查等机构提供数据支撑的见解。目的是实践可持续旅游, 平衡公众进入和供子孙后代使用的壁画保护。

设计/方法

25年来, 阿詹塔洞穴的游客增加了一倍, 影响了古壁画的小气候条件。该研究评估了游客的影响, 考虑温度、湿度和污染, 建立了一个制度并确定承载能力。量化承载能力的指标面临着挑战。这项研究为全球旅游业和遗产保护提供了信息, 提供了适用于世界各地文化遗址的方法。

研究发现

这项研究考察了环境对阿詹塔洞穴壁画保护的影响, 包括湿度、微生物生长、阳光照射、空气质量和游客的存在。游客的涌入使二氧化碳含量上升, 直接危及壁画。对颗粒物的考虑, 尤其是在参观期间, 强调了数据驱动决策和现代技术应用对保护阿詹塔洞穴的艺术品的必要性。这一点至关重要, 因为它具有全球意义和旅游相关的脆弱性。

社会影响

这项研究具有重大的社会影响并引起全球共鸣。当地社区和旅游利益相关者积极参与阿旃陀石窟的保护和推广, 可以增强居民的赋权, 激发居民的自豪感、主人翁意识和责任感, 确保可持续享受文化遗产, 同时为子孙后代保护文化遗产。此外, 还将为当地居民带来社会经济效益, 例如旅游经营者、导游、接待人员、工匠、纪念品店主等的就业机会。

创意/价值

这项研究综合了艺术保护、环境科学、文化遗产保护和社会方面以应对全球旅游业的挑战。它关注一个具有世界意义的遗址, 为艺术品保护、旅游管理和环境问题提供了实用的策略。这些建议提供了适用于全球遗产地的现实世界解决方案, 将科学分析与社会和文化见解联系起来。

Finalidad

El estudio investiga los factores medioambientales que influyen en el deterioro de los murales de Ajanta, evaluando los efectos globales del turismo y el comportamiento de los visitantes sobre el entorno de las cuevas y los murales. Se examina el papel que desempeñan las partes interesadas en la conservación y aporta datos para orientar a instituciones como la encuesta arqueológica de India. El objetivo son las prácticas turísticas sostenibles para equilibrar el acceso del público con la conservación de los murales para las generaciones futuras.

Diseño/metodología/enfoque

A lo largo de 25 años, los visitantes de las cuevas de Ajanta se han duplicado, con un impacto en las condiciones microclimáticas de los murales antiguos. El estudio evalúa el impacto de los visitantes para establecer una regulación y determinar la capacidad de carga, teniendo en cuenta la temperatura, la humedad y la contaminación. La cuantificación de la capacidad plantea problemas debido a las variables. La investigación aporta información al turismo mundial y a la conservación del patrimonio, ofreciendo metodologías aplicables a sitios culturales de todo el mundo.

Resultados

Este estudio examina los impactos ambientales en la conservación de los murales de las cuevas de Ajanta, incluyendo la humedad, el crecimiento microbiano, la exposición a la luz solar, la calidad del aire y la presencia de turistas. La afluencia de turistas aumenta los niveles de CO2, poniendo directamente en peligro los murales. La preocupación por las partículas, especialmente durante las visitas, pone de relieve la necesidad de tomar decisiones basadas en datos y de utilizar tecnología actual para proteger las obras de arte de las cuevas de Ajanta, algo crucial debido a su importancia mundial y a las vulnerabilidades relacionadas con el turismo.

Implicaciones sociales

Este estudio conlleva importantes implicaciones sociales con una resonancia global. La participación activa de la comunidad local y las partes interesadas del turismo en la conservación y promoción de las Cuevas de Ajanta fomenta el empoderamiento, generando un sentido de orgullo, propiedad y responsabilidad entre los residentes y garantiza el disfrute sostenible del patrimonio cultural al mismo tiempo que lo salvaguarda para las generaciones futuras. Además, habrá beneficios socioeconómicos para los residentes locales, como oportunidades de empleo como operadores turísticos, guías turísticos, personal de hostelería, artesanos, comerciantes de souvenirs, etc.

Originalidad/valor

Este estudio integra la conservación del arte, las ciencias medioambientales, la preservación del patrimonio cultural y los aspectos sociales para abordar los retos del turismo mundial. Centrándose en un sitio de importancia mundial, ofrece estrategias prácticas para la conservación de las obras de arte, la gestión del turismo y los problemas medioambientales. Estas recomendaciones aportan soluciones reales aplicables a lugares patrimoniales de todo el mundo, tendiendo puentes entre el análisis científico y las percepciones sociales y culturales.

Article
Publication date: 20 September 2024

Liberato Venant Haule

A review of sustainability challenges of flame retardants (FRs) for textiles has been conducted. Specifically, the purpose of this paper is to identify and recommend solutions to…

Abstract

Purpose

A review of sustainability challenges of flame retardants (FRs) for textiles has been conducted. Specifically, the purpose of this paper is to identify and recommend solutions to sustainability challenges emanating from the raw material, processing technology and performance of the FRs used for textiles.

Design/methodology/approach

The approach used in preparing this paper was based on the review of various scholarly databases about the subject matter. The review approach is designed to inform the readers about the sustainability challenges of FRs for textiles. The science of burning and FRs for synthetic and cellulosic fibres were reviewed. Both synthetic and natural biodegradable FRs for textiles has been identified. The obtained literature was then synthesised to get information about sustainable challenges of non-halogenated FRs both synthetic and natural biodegradable. Finally, possible approaches for mitigating the identified challenges have been recommended.

Findings

The sustainability challenges of the FRs in terms of raw material, processing, affordability and performance have been identified. Synthetic FRs suffer from sustainability challenges in terms of raw materials, processing and non-renewability. Despite the environmental friendliness and sustainability in terms of being renewability, processability and biodegradability, natural biodegradable FRs have poor performance compared to synthetic ones. Moreover, natural biodegradable FRs depend on geographical condition and lack economic variability data. Potentially, the challenges of FRs can be mitigated through eco-friendly synthesis, chemical modification and sustainable methods of applications. Because of its renewability and environmental friendliness, biodegradable FRs have a potential to becoming sustainable if researched more.

Originality/value

In this review, a collection of literature about sustainability challenges of FRs and the approaches to overcome the challenges has been provided. The collected information was analysed and synthesised to bring understanding of the science of burning, types and application of FRs for textiles and biodegradable FRs. Sustainability challenges have been identified, and mitigation approaches are provided.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 16 May 2024

Erfan Anjomshoa

Nowadays, thermal comfort plays a prominent role in contemporary construction practices. Appropriate thermal insulation not only offers energy efficiency benefits in buildings but…

23

Abstract

Purpose

Nowadays, thermal comfort plays a prominent role in contemporary construction practices. Appropriate thermal insulation not only offers energy efficiency benefits in buildings but also enhances occupant well-being, comfort, and productivity. Therefore, a comprehensive understanding of the thermal properties of building materials is essential. This research aims to prepare and investigate a lightweight gypsum-based composite incorporating nano montmorillonite with advanced thermal insulation properties, considering both quality and cost-effectiveness while ensuring environmental compatibility.

Design/methodology/approach

This study adopts a laboratory experimental approach. A gypsum sample (without additives) and seven samples of gypsum combined with varying percentages of sodium and calcium montmorillonite nanoclays undergo extensive testing and analysis. Subsequently, the properties of these samples are compared.

Findings

The results indicate that adding montmorillonite nanoclays to gypsum composites reduces the density of the tested samples and increases their porosity. Moreover, the thermal conductivity coefficient decreases in these samples, significantly improving the thermal insulation properties of the lightweight gypsum plaster. This improvement is more pronounced in samples containing sodium montmorillonite nanoclay compared to calcium-based samples. Additionally, the investigations reveal that compressive strength decreases with the addition of montmorillonite to the samples.

Originality/value

In this research, laboratory experiments were conducted to investigate the physical and mechanical properties of gypsum plaster with varying percentages of sodium and calcium montmorillonite nanoclays. The studied properties include density, porosity, thermal conductivity coefficient, and compressive strength. Additionally, stress-strain diagrams, elastic modulus, and initial and secondary critical stresses were analyzed for each specimen.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 20 May 2024

Mugahed Amran and Ali Onaizi

Low-carbon concrete represents a new direction in mitigating the global warming effects caused by clinker manufacturing. Utilizing Saudi agro-industrial by-products as an…

35

Abstract

Purpose

Low-carbon concrete represents a new direction in mitigating the global warming effects caused by clinker manufacturing. Utilizing Saudi agro-industrial by-products as an alternative to cement is a key support in reducing clinker production and promoting innovation in infrastructure and circular economy concepts, toward decarbonization in the construction industry. The use of fly ash (FA) as a cement alternative has been researched and proven effective in enhancing the durability of FA-based concrete, especially at lower replacement levels. However, at higher replacement levels, a noticeable impediment in mechanical strength indicators limits the use of this material.

Design/methodology/approach

In this study, low-carbon concrete mixes were designed by replacing 50% of the cement with FA. Varying ratios of nano-sized glass powder (4 and 6% of cement weight) were used as nanomaterial additives to enhance the mechanical properties and durability of the designed concrete. In addition, a 10% of the mixing water was replaced with EMs dosage.

Findings

The results obtained showed a significant positive impact on resistance and durability properties when replacing 10% of the mixing water with effective microorganisms (EMs) broth and incorporating nanomaterial additives. The optimal mix ratios were those designed with 10% EMs and 4–6% nano-sized glass powder additives. However, it can be concluded that advancements in eco-friendly concrete additive technologies have made significant contributions to the development of sophisticated concrete varieties.

Originality/value

This study focused at developing nanomaterial additives from Saudi industrial wastes and at presenting a cost-effective and feasible solution for enhancing the properties of FA-based concrete. It has also been found that the inclusion of EMs contributes effectively to enhancing the concrete's resistance properties.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 7 May 2024

Haruna Ibrahim, George Wardeh, Hanaa Fares and Elhem Ghorbel

The main aim of the current study is to investigate the effect of Anti-Crack HP 67/36 glass fibre on the mechanical performance of mortars made of cement, with a focus on…

Abstract

Purpose

The main aim of the current study is to investigate the effect of Anti-Crack HP 67/36 glass fibre on the mechanical performance of mortars made of cement, with a focus on post-cracking evaluations using the digital image correlation (DIC) technique.

Design/methodology/approach

Experimental tests were carried out on 36-mm long fibres at 0.8% by volume and added to the normal strength (NSM), high strength (HSM) and high strength mortar with fly ash (HSMFA) mortars. CEM I 52.5 CP2 NF, CEM II/A-L 42.5 NF and CEM III/C 32.5 N-SR PM were used for each series of mortar to assess the performance of the glass fibres with the types of cement. F-class fly (FA) ash was used to reduce global CO2 emissions.

Findings

The mortar’s strength decreased as the cement types changed from CEM I to CEM II and III. However, due to changes in the portlandite content of the cement, water porosity increased for both types of mortar, without and with fibre. It was also found that using glass fibre increased flexural strength more than compressive strength, regardless of the type of cement used. For all the strength classes, it was found that the mortar mixes with CEM I had the highest critical crack opening (wc) and fracture energy (GF), followed by CEM II and III. No significant effects were observed in the mortar’s property by replacing fly ash (12%).

Research limitations/implications

Only mortars were formulated in this study, but the results must be verified at the concrete scale.

Practical implications

Validation of the DIC technique to characterize the post-cracking behaviour of cement-based material. Use of glass fibres to improve the material’s resistance to cracking.

Social implications

Use of CEM II and CEM III cements with low CO2 footprint instead of CEMI without altering the mechanical performance of the material.

Originality/value

The work is a further contribution to studying the cracking behaviour of several series of variable mortars depending on the resistance class and the type of cement used.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 25 March 2024

Mostafa Abdel-Hamied, Ahmed A.M. Abdelhafez and Gomaa Abdel-Maksoud

This study aims to focus on the main materials used in consolidation processes of illuminated paper manuscripts and leather binding.

Abstract

Purpose

This study aims to focus on the main materials used in consolidation processes of illuminated paper manuscripts and leather binding.

Design/methodology/approach

For each material, chemical structure, chemical composition, molecular formula, solubility, advantages, disadvantages and its role in treatment process are presented.

Findings

This study concluded that carboxy methyl cellulose, hydroxy propyl cellulose, methyl cellulose, cellulose acetate, nanocrystalline cellulose, funori, sturgeon glue, poly vinyl alcohol, chitosan, chitosan nanoparticles (NPs), gelatin, aquazol, paraloid B72 and hydroxyapatite NPs were the most common and important materials used for the consolidation of illuminated paper manuscripts. For the leather bindings, hydroxy propyl cellulose, polyethylene glycol, oligomeric melamine-formaldehyde resin, acrylic wax SC6000, pliantex, paraloid B67 and B72, silicone oil and collagen NPs are the most consolidants used.

Originality/value

Illuminated paper manuscripts with leather binding are considered one of the most important objects in libraries, museums and storehouses. The uncontrolled conditions and other deterioration factors inside the libraries and storehouses lead to degradation of these artifacts. The brittleness, fragility and weakness are considered the most common deterioration aspects of illuminated paper manuscripts and leather binding. Therefore, the consolidation process became vital and important to solve this problem. This study presents the main materials used for consolidation process of illuminated paper manuscripts and leather bindings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 April 2024

Lara E. Yousif, Mayyadah S. Abed, Aseel B. Al-Zubidi and Kadhim K. Resan

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other…

Abstract

Purpose

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other countries. With almost 80% of the world’s amputees having below-the-knee amputations, Iraq has become a global leader in the population of amputees. Important components found in lower limb prostheses include the socket, pylon (shank), prosthetic foot and connections.

Design/methodology/approach

There are two types of prosthetic feet: articulated and nonarticulated. The solid ankle cushion heel foot is the nonarticulated foot that is most frequently used. The goal of this study is to use a composite filament to create a revolutionary prosthetic foot that will last longer, have better dorsiflexion and be more stable and comfortable for the user. The current study, in addition to pure polylactic acid (PLA) filament, 3D prints test items using a variety of composite filaments, such as PLA/wood, PLA/carbon fiber and PLA/marble, to accomplish this goal. The experimental step entails mechanical testing of the samples, which includes tensile testing and hardness evaluation, and material characterization by scanning electron microscopy-energy dispersive spectrometer analysis. The study also presents a novel design for the nonarticulated foot that was produced with SOLIDWORKS and put through ANSYS analysis. Three types of feet are produced using PLA, PLA/marble and carbon-covered PLA/marble materials. Furthermore, the manufactured prosthetic foot undergoes testing for dorsiflexion and fatigue.

Findings

The findings reveal that the newly designed prosthetic foot using carbon fiber-covered PLA/marble material surpasses the PLA and PLA/marble foot in terms of performance, cost-effectiveness and weight.

Originality/value

To the best of the author’s knowledge, this is the first study to use composite filaments not previously used, such as PLA/wood, PLA/carbon fiber and PLA/marble, to design and produce a new prosthetic foot with a longer lifespan, improved dorsiflexion, greater stability and enhanced comfort for the patient. Beside the experimental work, a numerical technique specifically the finite element method, is used to assess the mechanical behavior of the newly designed foot structure.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 September 2024

Solomon Oyebisi, Mahaad Issa Shammas, Hilary Owamah and Samuel Oladeji

The purpose of this study is to forecast the mechanical properties of ternary blended concrete (TBC) modified with oyster shell powder (OSP) and shea nutshell ash (SNA) using deep…

Abstract

Purpose

The purpose of this study is to forecast the mechanical properties of ternary blended concrete (TBC) modified with oyster shell powder (OSP) and shea nutshell ash (SNA) using deep neural network (DNN) models.

Design/methodology/approach

DNN models with three hidden layers, each layer containing 5–30 nodes, were used to predict the target variables (compressive strength [CS], flexural strength [FS] and split tensile strength [STS]) for the eight input variables of concrete classes 25 and 30 MPa. The concrete samples were cured for 3–120 days. Levenberg−Marquardt's backpropagation learning technique trained the networks, and the model's precision was confirmed using the experimental data set.

Findings

The DNN model with a 25-node structure yielded a strong relation for training, validating and testing the input and output variables with the lowest mean squared error (MSE) and the highest correlation coefficient (R) values of 0.0099 and 99.91% for CS and 0.010 and 98.42% for FS compared to other architectures. However, the DNN model with a 20-node architecture yielded a strong correlation for STS, with the lowest MSE and the highest R values of 0.013 and 97.26%. Strong relationships were found between the developed models and raw experimental data sets, with R2 values of 99.58%, 97.85% and 97.58% for CS, FS and STS, respectively.

Originality/value

To the best of the authors’ knowledge, this novel research establishes the prospects of replacing SNA and OSP with Portland limestone cement (PLC) to produce TBC. In addition, predicting the CS, FS and STS of TBC modified with OSP and SNA using DNN models is original, optimizing the time, cost and quality of concrete.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 June 2024

Salem H. Abdelgader, Marzena Kurpinska, Hakim Salem Abdelgader, Farzam Omidi Moaf and Mugahed Amran

The research investigates the impact of concrete design methods on performance, emphasizing environmental sustainability. The study compares the modified Bolomey method and…

Abstract

Purpose

The research investigates the impact of concrete design methods on performance, emphasizing environmental sustainability. The study compares the modified Bolomey method and Abrams’ law in designing concretes. Significant differences in cement consumption and subsequent CO2 emissions are revealed. The research advocates for a comprehensive life cycle assessment, considering factors like compressive strength, carbonation resistance, CO2 emissions, and cost. The analysis underscores the importance of evaluating concrete not solely based on strength but also environmental impact. The study concludes that a multicriteria approach, considering the entire life cycle, is essential for sustainable concrete design, addressing durability, environmental concerns, and economic factors.

Design/methodology/approach

The study employed a comprehensive design and methodology approach, involving the formulation and testing of 20 mixed concretes with strengths ranging from 25 MPa to 45 MPa. Two distinct design methods, the modified Bolomey method (three equations method) and Abrams’ law, were utilized to calculate concrete compositions. Laboratory experiments were conducted to validate the computational models, and subsequent analyses focused on assessing differences in cement consumption, compressive strength, CO2 emissions, and concrete resistance to carbonation. The research adopted a multidisciplinary perspective, integrating theoretical analysis, laboratory testing, and life cycle assessment to evaluate concrete performance and sustainability.

Findings

Conclusion from the study includes substantial variations (56%–112%) in cement content, depending on the calculation method. Abrams' law proves optimal for compressive strength (30 MPa–45 MPa), while the three equations method yields higher actual strength (30%–51%). Abrams' law demonstrates optimal cement use, but concrete designed with the three equations method exhibits superior resistance to aggressive environments. Cement content exceeding 450 kg/m³ is undesirable. Concrete designed with Abrams' law is economically favorable (12%–30% lower costs). The three equations method results in higher CO2 emissions (38–83%), emphasizing the need for life cycle assessment.

Originality/value

This study’s originality lies in its holistic evaluation of concrete design methods, considering environmental impact, compressive strength, and cost across a comprehensive life cycle. The comparison of the traditional Abrams' law and the three equations method, along with detailed laboratory tests, contributes novel insights into optimal cement use and concrete performance. The findings underscore the importance of a multicriteria approach, emphasizing sustainability and economic viability. The research provides valuable guidance for engineers and policymakers seeking environmentally conscious and economically efficient concrete design strategies, addressing a critical gap in the field of construction materials and contributing to sustainable infrastructure development.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 23 September 2024

Souty Adel Nassef Beskhyroun and Mohamed Abdel-Aziz

This paper aims to assess the efficiency of emulsified essential oils in glycerol as eco-friendly antimicrobial and plasticized agents added to the biopolymer of gelatin for…

Abstract

Purpose

This paper aims to assess the efficiency of emulsified essential oils in glycerol as eco-friendly antimicrobial and plasticized agents added to the biopolymer of gelatin for lining historical oil paintings on canvases.

Design/methodology/approach

Cedar oil, cinnamon oil and their mixtures were emulsified in glycerol and incorporated into gelatin adhesive as green biocides and plasticizers. Physical, biological, chemical and mechanical tests were conducted on experimental mock-ups to assess the gelatin-based adhesive formulations for the reinforcement of canvas supports. Scanning electron microscope, colorimetric measurements, antimicrobial activity test, attenuated total reflection-Fourier transform infrared spectroscopy, tensile strength and elongation tests were carried out on the mock-ups before and after the artificial aging.

Findings

The formulations of gelatin-based adhesive with cinnamon and cinnamon-cedar mixture emulsified in glycerol proved their efficiency on the antimicrobial activity test, chemically delaying the decomposition of gelatin and accordingly providing compatible mechanical properties. Gelatin-based adhesive with emulsified cinnamon oil showed a slight yellowing that was quite improved with the mixture of the cinnamon-cedar-based adhesive formulation.

Originality/value

This study promotes a green approach to lining historical oil paintings by developing green formulations from bio-based origins that minimize the shrinkage and microbial infection of gelatin for lining paintings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Access

Year

Last 6 months (20)

Content type

Earlycite article (20)
1 – 10 of 20