Search results

1 – 10 of 903
Article
Publication date: 6 October 2022

Ahmed Gouda Mohamed and Amr Mousa

Current research efforts exhibit a surge imperative for a building information modelling (BIM) approach that embodies a repository of all relevant data of existing building…

Abstract

Purpose

Current research efforts exhibit a surge imperative for a building information modelling (BIM) approach that embodies a repository of all relevant data of existing building components while monitoring and consistently recording numerous components’ functions throughout its lifecycle, especially in Egypt. This research paper aims to develop an integrated as-is BIM-facility management (FM) information model for the existing building’s components via a case study, depicting a repository for historical data and knowledge amassed from inspections and conveying maintenance decisions automatically during the FM practices.

Design/methodology/approach

The developed approach pursues four successive steps: data acquisition and processing of building components; components recognition from point clouds; modelling scanned point clouds; and quick response code information transfer to BIM components.

Findings

The proposed approach incorporates the as-is BIM with the building components’ as-is FM information to portray a repository for historical data and knowledge collected from inspections to proactively benefit facility managers in simplifying, expediting and enhancing maintenance decisions automatically during FM practices.

Originality/value

This paper presents a digital alternative to manual maintenance recordkeeping concerning building components to retrieve their as-is and historical data using a case study in Egypt. This paper proposes a broad scan to as-is information BIM approach for the existing building’s components to condone maintenance interventions using a versatile, affordable, readily available and multi-functional method for scanning the building’s components using a handheld tool.

Details

Journal of Facilities Management , vol. 22 no. 4
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 26 January 2022

The-Quan Nguyen, Eric C.W. Lou and Bao Ngoc Nguyen

This paper aims to provide an integrated BIM-based approach for quantity take-off for progress payments in the context of high-rise buildings in Vietnam. It tries to find answers…

Abstract

Purpose

This paper aims to provide an integrated BIM-based approach for quantity take-off for progress payments in the context of high-rise buildings in Vietnam. It tries to find answers for the following questions: (1) When to start the QTO processes to facilitate the contract progress payments? (2) What information is required to measure the quantity of works to estimate contract progress payment (3) What are the challenges to manage (i.e. create, store, update and exploit)? What are the required information for this BIM use? and (4) How to process the information to deliver BIM-based QTO to facilitate contract progress payment?

Design/methodology/approach

The paper applied a deductive approach and expert consensus through a Delphi procedure to adapt to current innovation around BIM-based QTO. Starting with a literature review, it then discusses current practices in BIM-based QTO in general and high-rise building projects in particular. Challenges were compiled from the previous studies for references for BIM-based QTO to facilitate contract progress payment for high-rise building projects in Vietnam. A framework was developed considering a standard information management process throughout the construction lifecycle, when the BIM use of this study is delivered. The framework was validated with Delphi technique.

Findings

Four major challenges for BIM-based QTO discovered: new types of information required for the BIM model, changes and updates as projects progress, low interoperability between BIM model and estimation software, potentiality of low productivity and accuracy in data entry. Required information for QTO to facilitate progress payments in high-rise building projects include Object Geometric/Appearance Information, Structural Components' Definition and Contextual Information. Trade-offs between “Speed – Level of Detail–Applicable Breadth” and “Quality – Productivity” are proposed to consider the information amount to input at a time when creating/updating BIM objects. Interoperability check needed for creating, authoring/updating processing the BIM model's objects.

Research limitations/implications

This paper is not flawless. The first limitation lies in that the theoretical framework was established only based on desk research and small number of expert judgment. Further primary data collection would be needed to determine exactly how the framework underlies widespread practices. Secondly, this study only discussed the quantity take-off specifically for contract progress payment, but not for other purposes or broader BIM uses. Further research in this field would be of great help in developing a standard protocol for automatic quantity surveying system in Vietnam.

Originality/value

A new theoretical framework for BIM-based QTO validated with Delphi technique to facilitate progress payments for high-rise building projects, considering all information management stages and the phases of information development in the project lifecycle. The framework identified four types of information required for this QTO, detailed considerations for strategies (Library Objects Development, BIM Objects Information Declaration, BIM-based QTO) for better managing the information for this BIM use. Two trade-offs of “Speed – LOD–Applicable Breadth” and “Quality – Productivity” have been proposed for facilitating the strategies and also for enhancing the total efficiency and effectiveness of the QTO process.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 11 June 2024

Erfan Anjomshoa

Nowadays, designing environmentally compatible buildings with acceptable performance in terms of cost, materials, and energy efficiency is considered crucial for developing…

Abstract

Purpose

Nowadays, designing environmentally compatible buildings with acceptable performance in terms of cost, materials, and energy efficiency is considered crucial for developing sustainable cities. This research aims to identify and rank the most influential factors in the application of Building Information Modeling (BIM) systems in the smartification of green and sustainable buildings.

Design/methodology/approach

The present research is applied and descriptive. In this study, we identified the most influential factors in the application of Building Information Modeling (BIM) systems through library studies and expert opinions. Data were collected using a questionnaire, and a combination of the one-sample t-test method with a 95% confidence level and the fuzzy VIKOR method was employed for analysis.

Findings

The results show that the most influential factors in the application of Building Information Modeling (BIM) systems in the Smartification of green and sustainable buildings, in order, are: “Energy saving and consumption reduction,” “Increased productivity and efficiency,” “Life-cycle assessment (LCA),” “Eco-friendly design,” “Integration with IoT and other technologies.”

Originality/value

In this study, while addressing the intersection of BIM technology, green building principles, and smart building objectives to optimize the performance of buildings during their life cycle, the most influential factors in the use of this system were ranked based on the criteria of “impact level,” “importance level,” and “availability of necessary tools” for implementation in Kerman. Moreover, solutions for more effectively utilizing this system in the smartification of green and intelligent buildings were proposed.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 March 2024

Sihao Li, Jiali Wang and Zhao Xu

The compliance checking of Building Information Modeling (BIM) models is crucial throughout the lifecycle of construction. The increasing amount and complexity of information…

Abstract

Purpose

The compliance checking of Building Information Modeling (BIM) models is crucial throughout the lifecycle of construction. The increasing amount and complexity of information carried by BIM models have made compliance checking more challenging, and manual methods are prone to errors. Therefore, this study aims to propose an integrative conceptual framework for automated compliance checking of BIM models, allowing for the identification of errors within BIM models.

Design/methodology/approach

This study first analyzed the typical building standards in the field of architecture and fire protection, and then the ontology of these elements is developed. Based on this, a building standard corpus is built, and deep learning models are trained to automatically label the building standard texts. The Neo4j is utilized for knowledge graph construction and storage, and a data extraction method based on the Dynamo is designed to obtain checking data files. After that, a matching algorithm is devised to express the logical rules of knowledge graph triples, resulting in automated compliance checking for BIM models.

Findings

Case validation results showed that this theoretical framework can achieve the automatic construction of domain knowledge graphs and automatic checking of BIM model compliance. Compared with traditional methods, this method has a higher degree of automation and portability.

Originality/value

This study introduces knowledge graphs and natural language processing technology into the field of BIM model checking and completes the automated process of constructing domain knowledge graphs and checking BIM model data. The validation of its functionality and usability through two case studies on a self-developed BIM checking platform.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 May 2022

Mustafa Onur Savaşkan and Ozan Önder Özener

This article presents a case study on the Heritage Building Information Modeling (H-BIM) application in a historic village in Bursa, Turkey. The study addresses how tailor-made…

Abstract

Purpose

This article presents a case study on the Heritage Building Information Modeling (H-BIM) application in a historic village in Bursa, Turkey. The study addresses how tailor-made and highly structured H-BIM approaches can effectively be implemented in preservation applications for historic vernacular buildings in the rural architecture context.

Design/methodology/approach

Using inexpensive digital photogrammetry techniques tightly combined with an object-oriented BIM ontology, parametric meta-modeling and object/system propagation methods, the study employed a holistic H-BIM approach for capturing the materiality, building object behaviors and indigenous construction principles of a characteristic vernacular house that were synthesized in a parametric H-BIM model. The followed stages, steps and connected methods were systematized and articulated in a prototypical H-BIM implementation framework.

Findings

The study findings suggested that the developed parametric H-BIM approach can return effective results with the combined use of low-cost and practical digital photogrammetry with BIM methods. The flexibility and adaptability of the parametric H-BIM implementation framework facilitated the synthesis of a comprehensive H-BIM model and allowed an in-depth evaluation of local architectural heritage with its physical, spatial and environmental characteristics. The proposed H-BIM approach also provided significant documentation and system-specific assessment benefits for preserving the vernacular examples which are prone to extinction especially due to structural and systemic deterioration.

Originality/value

The study proposes a feasible, practical and replicable H-BIM implementation methodology for vernacular preservation applications. The knowledge-embedded H-BIM approach, flows and techniques presented in this study provide a holistic and systematic H-BIM framework – with the integrated use of digital photogrammetry and parametric meta-modeling methods – that has the potential for the democratization of H-BIM applications in education and practice.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 31 October 2023

Chukwuka Christian Ohueri, San Chuin Liew, Jibril Adewale Bamgbade and Wallace Imoudu Enegbuma

The efficient application of building information modeling (BIM) methodology in the sustainable building design process, known as green BIM, provides ideal leverage to…

Abstract

Purpose

The efficient application of building information modeling (BIM) methodology in the sustainable building design process, known as green BIM, provides ideal leverage to significantly enhance multidiscipline team collaboration. However, the practical execution of green BIM is characterized by issues such as duplication of work, information silos and poor cross-party coordination. Besides, there are limited studies on the specific components that are critical to driving green BIM collaborative design. This study aims to establish the critical components of green BIM collaborative design to enable the multidiscipline team to effectively use diverse software to collaboratively exchange accurate information, thus ensuring informed decision-making in the sustainable building design process.

Design/methodology/approach

Data were obtained by using a questionnaire to survey 360 respondents comprising mainly architects and engineers (civil, mechanical and electrical) in Malaysia. Subsequently, data were analyzed via confirmatory factor analysis. Afterward, a measurement model was established and used to test the 11 hypotheses of this study.

Findings

A covariance-based structural equation model of the critical components for successful BIM-based sustainable building design collaboration was established.

Practical implications

The research findings will guide the multidisciplinary team to collaboratively exchange accurate information in green BIM practices.

Originality/value

To the best of the authors’ knowledge, this research is the first attempt in the literature to provide a pragmatic approach for practitioners to combine the established critical components of green BIM to collaboratively exchange heterogeneous sustainability criteria and efficiently design buildings with high sustainability performance, particularly in emerging countries like Malaysia.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 10 July 2024

Hasan Fevzi Cugen, Semra Arslan Selcuk and Yusuf Arayici

Building Information Modelling in building processes brings significant efficiency gains. However, its use in restoration projects is still experimental. On the other hand, more…

Abstract

Purpose

Building Information Modelling in building processes brings significant efficiency gains. However, its use in restoration projects is still experimental. On the other hand, more than traditional methods are needed for communication, collaboration, and shared understanding. Hence, the main research question is how to enhance these aspects in multinational projects with information transparency challenges and the need for shared understanding among stakeholders. This research aims to develop and propose a hybrid modelling approach that integrates traditional and BIM-based information process workflows through testing and evaluating to what extent BIM can be used in restoration projects without excessive efforts.

Design/methodology/approach

Considering this aim, the case study, the Mahmud Pasha Hammam as the heritage building, a 15th-century structure located in Serbia, was studied with the action research strategy to enable action-based learning by doing. Alongside the 2D documentation as the traditional method for the existing structure, restoration design proposals were also produced for the new additions to the heritage structure with BIM.

Findings

A new BIM use scenario was experimented with and proposed, proving BIM implementation's potential impact on heritage restoration projects. A hybrid model was developed that meets the requirements of existing regulations and specifications, where restoration proposals were visualized quickly, quantity take-off was produced, and technical drawings were generated instantly.

Originality/value

This hybrid modelling workflow integrates HBIM with traditional methods in restoration projects to improve communication, efficiency, and collaboration in a real-time professional project.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 15 February 2023

Sochea Khan, Kriengsak Panuwatwanich and Sasiporn Usanavasin

This paper presents a developed BIMxAR application, an integration of building information modeling (BIM) with augmented reality (AR) linked with real-time online database to…

Abstract

Purpose

This paper presents a developed BIMxAR application, an integration of building information modeling (BIM) with augmented reality (AR) linked with real-time online database to support the building facility management work. The primary aim of this research was to develop and empirically examine the applicability of a BIM-based AR (BIMxAR) application in building facility management.

Design/methodology/approach

The BIMxAR application was developed and experimented with maintenance work of a university laboratory building. The experiment consisted of a comparison of supportive maintenance tasks performed using the traditional approach and the BIMxAR approach by 38 university students. The time taken to complete each task was recorded and analyzed using statistical analyses to compare the performance between the tasks completed using each approach.

Findings

The results indicated that the group using the BIMxAR application approach completed the tasks correctly in a significantly shorter time compared to that using the traditional approach. The findings supported the applicability of the developed BIMxAR application and the improvement of the building facility management tasks when using the proposed approach.

Originality/value

This paper presents a methodological approach in developing a mobile application that integrates BIM with AR for facility management work, leveraging real-time information exchange through a cloud-based platform. The paper also provides empirical evidence that demonstrates how the integration between BIM and AR could be achieved and implemented to help facilitate building maintenance tasks.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 January 2024

Kenneth Lawani, Farhad Sadeghineko, Michael Tong and Mehmethan Bayraktar

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D…

155

Abstract

Purpose

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D laser scanning technologies. This case study integrated 3D laser point cloud scans with BIM to explore the effects of BIM adoption on ongoing construction project, whilst evaluating the utility of 3D laser scanning technology for producing structural 3D models by converting point cloud data (PCD) into BIM.

Design/methodology/approach

The primary data acquisition adopted the use of Trimble X7 laser scanning process, which is a set of data points in the scanned space that represent the scanned structure. The implementation of BIM with the 3D PCD to explore the precision and effectiveness of the construction processes as well as the as-built condition of a structure was precisely captured using the 3D laser scanning technology to recreate accurate and exact 3D models capable of being used to find and fix problems during construction.

Findings

The findings indicate that the integration of BIM and 3D laser scanning technology has the tendency to mitigate issues such as building rework, improved project completion times, reduced project cost, enhanced interdisciplinary communication, cooperation and collaboration amongst the project duty holders, which ultimately enhances the overall efficiency of the construction project.

Research limitations/implications

The acquisition of data using 3D laser scanner is usually conducted from the ground. Therefore, certain aspects of the building could potentially disturb data acquisition; for example, the gable and sections of eaves (fascia and soffit) could be left in a blind spot. Data acquisition using 3D laser scanner technology takes time, and the processing of the vast amount of data acquired is laborious, and if not carefully analysed, could result in errors in generated models. Furthermore, because this was an ongoing construction project, material stockpiling and planned construction works obstructed and delayed the seamless capture of scanned data points.

Originality/value

These findings highlight the significance of integrating BIM and 3D laser scanning technology in the construction process and emphasise the value of advanced data collection methods for effectively managing construction projects and streamlined workflows.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 13 September 2024

Alireza Arbabi, Roohollah Taherkhani and Ramin Ansari

With the advancement of technology and more attention to environmental issues, building information modeling (BIM) and green building have become two new and growing trends in the…

Abstract

Purpose

With the advancement of technology and more attention to environmental issues, building information modeling (BIM) and green building have become two new and growing trends in the construction industry. Therefore, this study proposes a new strategy that integrates BIM and green building rating assessments with an emphasis on Iran Green Building Rating System (IGBRS).

Design/methodology/approach

By creating a Revit-IGBRS project template that includes sheets related to all credits, the project compliance with the IGBRS credits and management of submittal documents for certification has been facilitated. Finally, a case study of the materials and resources category of the IGBRS system was performed to validate the BIM-IGBRS application model. All 8 criteria of this category were examined by using Dynamo programming for the Revit sample project.

Findings

A practical model for BIM and IGBRS integration is presented, which allows designers to be aware of the IGBRS scores obtained before the project’s construction phase and examine different scenarios for the highest scores. Overall, this study showed that integrating BIM and the Iranian rating system is possible with some constraints, and adding some features to BIM software can promote this integration.

Originality/value

Given that no study has been conducted on the integration of BIM with the Iran Green Building Rating System (IGBRS), the present research investigates utilizing building information modeling to meet the credits requirements of this rating system. The results of this research can be generalized and used in other green rating systems.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 903