Search results

1 – 10 of 25
Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 May 2022

Rameesh Lakshan Bulathsinghala, Serosha Mandika Wijeyaratne, Sandun Fernando, Thantirige Sanath Siroshana Jayawardana, Vishvanath Uthpala Indrajith Senadhipathi Mudiyanselage and Samith Lakshan Sunilsantha Kankanamalage

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically…

Abstract

Purpose

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically for diabetic patients to identify the possibility of foot ulceration at the early stage.

Design/methodology/approach

The prototype can measure blood volumetric change and temperature variation in the forefoot area simultaneously. The waveform extracted using a pulsatile-blood-flow signal was used to assess blood perfusion-related information, and hence, predict ischemic ulcers. The temperature difference between ulcerated and the reference was used to predict neuropathic ulcers. The medical device can be used as a bandage during the application wherein the sensory module is placed inside the hollow pocket of the bandage. A platform was developed through a mobile application where doctors can extract real-time information, and hence, determine the possibility of ulceration.

Findings

The height of the peaks in the pulsatile-blood-flow signal measured from the subject with foot ischemic ulcers is significantly less than that of the subject without ischemic ulcers. In the presence of ischemic ulcers, the captured waveform flattens. Therefore, the blood perfusion from arteries to the tissue of the forefoot is considerably low for the subject with ischemic ulcers. According to the temperature difference data measured over 25 consecutive days, the temperature difference of the subject with neuropathic ulcers occasionally exceeded the 4 °F range but mostly had higher values closer to the 4 °F range. However, the temperature difference of the subject who had no complications of neuropathic ulcers did not exceed the 4 °F range, and the majority of the measurements occupy a narrow range from −2°F to 2 °F.

Originality/value

The proposed prototype of wearable medical apparatus can monitor both temperature variation and pulsatile-blood-flow signal on the forefoot simultaneously and thereby predict both ischemic and neuropathic diabetes using a single device. Most importantly, the wearable medical device can be used domestically without clinical assistance with a real-time data monitoring platform to predict the possibility of ulceration and the course of action thereof.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Jian Lin Han, Zixing Li and Lihua Gong

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart…

Abstract

Purpose

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart garments and other smart wearables such as wrist watches and wrist bands. The purpose of this study is to fill this knowledge gap by discussing issues regarding smart shoe sensing technologies, smart shoe sensor placements, factors that affect sensor placements and finally the areas of smart shoe applications.

Design/methodology/approach

Through a review of relevant literature, this study first and foremost attempts to explain what constitutes a smart shoe and subsequently discusses the current trends in smart shoe applications. Discussed in this study are relevant sensing technologies, sensor placement and areas of smart shoe applications.

Findings

This study outlined 13 important areas of smart shoe applications. It also uncovered that majority of smart shoe functionality are physical activity tracking, health rehabilitation and ambulation assistance for the blind. Also highlighted in this review are some of the bottlenecks of smart shoe development.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review paper focused on smart shoe applications, and therefore serves as an apt reference for researchers within the field of smart footwear.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 April 2024

Abhishek Barwar, Prateek Kala and Rupinder Singh

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery…

Abstract

Purpose

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery complications. But hitherto little has been reported on bibliographic analysis (BA) for health monitoring of bovine post-DH surgery for long-term management. Based on BA, this study aims to explore the sensor fabrication integrated with innovative AM technologies for health monitoring assistance of bovines post-DH surgery.

Design/methodology/approach

A BA based on the data extracted through the Web of Science database was performed using bibliometric tools (R-Studio and Biblioshiny).

Findings

After going through the BA and a case study, this review provides information on various 3D-printed meshes used over the sutured site and available Internet of Things-based solutions to prevent the recurrence of DH.

Originality/value

Research gaps exist for 3D-printed conformal sensors for health monitoring of bovine post-DH surgery.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 May 2024

Portia Atswei Tetteh, Michael Nii Addy, Alex Acheampong, Isaac Akomea-Frimpong, Ebenezer Ayidana and Frank Ato Ghansah

The construction industry is one of the most hazardous working environments globally. Studies reveal that wearable sensing technologies (WSTs) have practical applications in…

Abstract

Purpose

The construction industry is one of the most hazardous working environments globally. Studies reveal that wearable sensing technologies (WSTs) have practical applications in construction occupational health and safety management. In the global south, the adoption of WSTs in construction has been slow with few studies investigating the critical drivers for its adoption. The purpose of this study is to investigate the factors driving WSTs adoption in Ghana where investment in such technologies can massively enhance health and safety through effective safety monitoring.

Design/methodology/approach

To meet the objectives of this study, research data was drawn from 210 construction professionals. Purposive sampling technique was used to select construction professionals in Ghana and data was collected with the use of well-structured questionnaires. The study adopted the fuzzy synthetic evaluation model (FSEM) to determine the significance of the critical drivers for the adoption of WSTs.

Findings

According to the findings, perceived value, technical know-how, security, top management support, competitive pressure and trading partner readiness obtained a high model index of 4.154, 4.079, 3.895, 3.953, 3.971 and 3.969, respectively, as critical drivers for WSTs adoption in Ghana. Among the three broad factors, technological factors recorded the highest index of 3.971, followed by environmental factors and organizational factors with a model index of 3.938 and 3.916, respectively.

Practical implications

Theoretically, findings are consistent with studies conducted in developed countries, particularly with regard to the perceived value of WSTs as a key driver in its adoption in the construction industry. This study also contributes to the subject of WSTs adoption and, in the case of emerging countries. Practically, findings from the study can be useful to technology developers in planning strategies to promote WSTs in the global south. To enhance construction health and safety in Ghana, policymakers can draw from the findings to create conducive conditions for worker acceptance of WSTs.

Originality/value

Studies investigating the driving factors for WSTs adoption have mainly centered on developed countries. This study addresses this subject in Ghana where studies on WSTs application in the construction process are uncommon. It also uniquely explores the critical drivers for WSTs adoption using the FSEM.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 14 April 2023

Atul Varshney and Vipul Sharma

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to…

Abstract

Purpose

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to Microstrip (MS) line transition for satellite and RADAR applications. It facilitates the realization of nonplanar (waveguide-based) circuits into planar form for easy integration with other planar (microstrip) devices, circuits and systems. This paper describes the design of a SIW to microstrip transition. The transition is broadband covering the frequency range of 8–12 GHz. The design and interconnection of microwave components like filters, power dividers, resonators, satellite dishes, sensors, transmitters and transponders are further aided by these transitions. A common planar interconnect is designed with better reflection coefficient/return loss (RL) (S11/S22 ≤ 10 dB), transmission coefficient/insertion loss (IL) (S12/S21: 0–3.0 dB) and ultra-wideband bandwidth on low profile FR-4 substrate for X-band and Ku-band functioning to interconnect modern era MIC/MMIC circuits, components and devices.

Design/methodology/approach

Two series of metal via (6 via/row) have been used so that all surface current and electric field vectors are confined within the metallic via-wall in SIW length. Introduced aerodynamic slots in tapered portions achieve excellent impedance matching and tapered junctions with SIW are mitered for fine tuning to achieve minimum reflections and improved transmissions at X-band center frequency.

Findings

Using this method, the measured IL and RLs are found in concord with simulated results in full X-band (8.22–12.4 GHz). RLC T-equivalent and p-equivalent electrical circuits of the proposed design are presented at the end.

Practical implications

The measurement of the prototype has been carried out by an available low-cost X-band microwave bench and with a Keysight E4416A power meter in the microwave laboratory.

Originality/value

The transition is fabricated on FR-4 substrate with compact size 14 mm × 21.35 mm × 1.6 mm and hence economical with IL lie within limits 0.6–1 dB and RL is lower than −10 dB in bandwidth 7.05–17.10 GHz. Because of such outstanding fractional bandwidth (FBW: 100.5%), the transition could also be useful for Ku-band with IL close to 1.6 dB.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 July 2022

Fatima Iftikhar, Suleman Anis, Umar Bin Asad, Shagufta Riaz, Muntaha Rafiq and Salman Naeem

Carpal tunnel syndrome (CTS) is a hand disease caused by the pressing of the median nerve present in the palmar side of the wrist. It causes severe pain in the wrist, triggering…

Abstract

Purpose

Carpal tunnel syndrome (CTS) is a hand disease caused by the pressing of the median nerve present in the palmar side of the wrist. It causes severe pain in the wrist, triggering disturbance during sleep. Different products like splints, braces and gloves are available in the market to alleviate this disease but there was still a need to improve the wearability, comfort and cost of the product. This study was about designing a comfortable and cost-effective wearable system for mild-to-moderate CTS. Transcutaneous electrical nerve stimulation (TENS) therapy has been used to reduce the pain in the wrist.

Design/methodology/approach

After simulation by using Proteus software (which allowed the researchers to draw and simulate electrical circuits using ISIS, ARES and PCB design tools virtually), the circuit with optimum frequency, i.e. 33 Hz was selected, and the circuit was developed on a printed circuit board (PCB). The developed circuit was integrated successfully into the half glove structure.

Findings

The developed product had good thermophysiological comfort and hand properties as compared to the commercially available product of the same kind. In vivo testing (It involves the testing with living subjects like animals, plants or human beings) was performed which resulted in 85% confirmed viability of the product against CTS. A glove with an integrated circuit was developed successfully to accommodate various sizes without any sex specifications in a cost-effective way to mitigate the issue of CTS.

Research limitations/implications

Industrial workers, individuals frequently using their hands or those diagnosed with CTS may wish to use this product as therapy. The attention could not be paid to the aesthetic or visual appeal of the developed product.

Originality/value

A very comfortable glove with integrated TENS electrodes was developed successfully to accommodate various sizes without any sex specifications in a cost-effective way to mitigate the issues of CTS.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 27 October 2022

Sidney Newton

The purpose of this study is to highlight and demonstrate how the study of stress and related responses in construction can best be measured and benchmarked effectively.

Abstract

Purpose

The purpose of this study is to highlight and demonstrate how the study of stress and related responses in construction can best be measured and benchmarked effectively.

Design/methodology/approach

A range of perceptual and physiological measures are obtained across different time periods and during different activities in a fieldwork setting. Differences in the empirical results are analysed and implications for future studies of stress discussed.

Findings

The results of this study strongly support the use of multiple psychometrics and biosensors whenever biometrics are included in the study of stress. Perceptual, physiological and environmental factors are all shown to act in concert to impact stress. Strong conclusions on the potential drivers of stress should then only be considered when consistent results apply across multiple metrics, time periods and activities.

Research limitations/implications

Stress is an incredibly complex condition. This study demonstrates why many current applications of biosensors to study stress in construction are not up to the task and provides empirical evidence on how future studies can be significantly improved.

Originality/value

To the best of the author’s knowledge, this is the first study to focus explicitly on demonstrating the need for multiple research instruments and settings when studying stress or related conditions in construction.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 26 March 2024

Daniel Nygaard Ege, Pasi Aalto and Martin Steinert

This study was conducted to address the methodical shortcomings and high associated cost of understanding the use of new, poorly understood architectural spaces, such as…

Abstract

Purpose

This study was conducted to address the methodical shortcomings and high associated cost of understanding the use of new, poorly understood architectural spaces, such as makerspaces. The proposed quantified method of enhancing current post-occupancy evaluation (POE) practices aims to provide architects, engineers and building professionals with accessible and intuitive data that can be used to conduct comparative studies of spatial changes, understand changes over time (such as those resulting from COVID-19) and verify design intentions after construction through a quantified post-occupancy evaluation.

Design/methodology/approach

In this study, we demonstrate the use of ultra-wideband (UWB) technology to gather, analyze and visualize quantified data showing interactions between people, spaces and objects. The experiment was conducted in a makerspace over a four-day hackathon event with a team of four actively tracked participants.

Findings

The study shows that by moving beyond simply counting people in a space, a more nuanced pattern of interactions can be discovered, documented and analyzed. The ability to automatically visualize findings intuitively in 3D aids architects and visual thinkers to easily grasp the essence of interactions with minimal effort.

Originality/value

By providing a method for better understanding the spatial and temporal interactions between people, objects and spaces, our approach provides valuable feedback in POE. Specifically, our approach aids practitioners in comparing spaces, verifying design intent and speeding up knowledge building when developing new architectural spaces, such as makerspaces.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 13 February 2024

Nicola Cobelli and Silvia Blasi

This paper explores the Adoption of Technological Innovation (ATI) in the healthcare industry. It investigates how the literature has evolved, and what are the emerging innovation…

Abstract

Purpose

This paper explores the Adoption of Technological Innovation (ATI) in the healthcare industry. It investigates how the literature has evolved, and what are the emerging innovation dimensions in the healthcare industry adoption studies.

Design/methodology/approach

We followed a mixed-method approach combining bibliometric methods and topic modeling, with 57 papers being deeply analyzed.

Findings

Our results identify three latent topics. The first one is related to the digitalization in healthcare with a specific focus on the COVID-19 pandemic. The second one groups up the word combinations dealing with the research models and their constructs. The third one refers to the healthcare systems/professionals and their resistance to ATI.

Research limitations/implications

The study’s sample selection focused on scientific journals included in the Academic Journal Guide and in the FT Research Rank. However, the paper identifies trends that offer managerial insights for stakeholders in the healthcare industry.

Practical implications

ATI has the potential to revolutionize the health service delivery system and to decentralize services traditionally provided in hospitals or medical centers. All this would contribute to a reduction in waiting lists and the provision of proximity services.

Originality/value

The originality of the paper lies in the combination of two methods: bibliometric analysis and topic modeling. This approach allowed us to understand the ATI evolutions in the healthcare industry.

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

1 – 10 of 25