Search results

1 – 10 of over 1000
Article
Publication date: 19 October 2015

Yiwen Gao, He Li and Yan Luo

The purpose of this paper is to investigate the factors associated with consumer’s intention to adopt wearable technology in healthcare, and to examine the moderating effects of…

19566

Abstract

Purpose

The purpose of this paper is to investigate the factors associated with consumer’s intention to adopt wearable technology in healthcare, and to examine the moderating effects of product type on consumer’s adoption intention.

Design/methodology/approach

An integrated acceptance model was developed based on unified theory of acceptance and use of technology 2 (UTAUT2), protection motivation theory (PMT), and privacy calculus theory. The model was tested with 462 respondents using a survey.

Findings

Consumer’s decision to adopt healthcare wearable technology is affected by factors from technology, health, and privacy perspectives. Specially, fitness device users care more about hedonic motivation, functional congruence, social influence, perceived privacy risk, and perceived vulnerability, but medical device users pay more attention to perceived expectancy, self-efficacy, effort expectancy, and perceived severity.

Originality/value

This study is among the first to investigate healthcare wearable device from behavioral perspective. It also helps to comprehensively understand emerging health information technology (HIT) acceptance from technology, health, and privacy perspectives.

Details

Industrial Management & Data Systems, vol. 115 no. 9
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 24 October 2023

WenFeng Qin, Yunsheng Xue, Hao Peng, Gang Li, Wang Chen, Xin Zhao, Jie Pang and Bin Zhou

The purpose of this study is to design a wearable medical device as a human care platform and to introduce the design details, key technologies and practical implementation…

Abstract

Purpose

The purpose of this study is to design a wearable medical device as a human care platform and to introduce the design details, key technologies and practical implementation methods of the system.

Design/methodology/approach

A multi-channel data acquisition scheme based on PCI-E (rapid interconnection of peripheral components) was proposed. The flexible biosensor is integrated with the flexible data acquisition card with monitoring capability, and the embedded (device that can operate independently) chip STM32F103VET6 is used to realize the simultaneous processing of multi-channel human health parameters. The human health parameters were transferred to the upper computer LabVIEW by intelligent clothing through USB or wireless Bluetooth to complete the transmission and processing of clinical data, which facilitates the analysis of medical data.

Findings

The smart clothing provides a mobile medical cloud platform for wearable medical through cloud computing, which can continuously monitor the body's wrist movement, body temperature and perspiration for 24 h. The result shows that each channel is completely accurate to the top computer display, which can meet the expected requirements, and the wearable instant care system can be applied to healthcare.

Originality/value

The smart clothing in this study is based on the monitoring and diagnosis of textiles, and the electronic communication devices can cooperate and interact to form a wearable textile system that provides medical monitoring and prevention services to individuals in the fastest and most accurate way. Each channel of the system is precisely matched to the display screen of the host computer and meets the expected requirements. As a real-time human health protection platform technology, continuous monitoring of human vital signs can complete the application of human motion detection, medical health monitoring and human–computer interaction. Ultimately, such an intelligent garment will become an integral part of our everyday clothing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 October 2021

Mona Bokharaei Nia, Mohammadali Afshar Kazemi, Changiz Valmohammadi and Ghanbar Abbaspour

The increase in the number of healthcare wearable (Internet of Things) IoT options is making it difficult for individuals, healthcare experts and physicians to find the right…

Abstract

Purpose

The increase in the number of healthcare wearable (Internet of Things) IoT options is making it difficult for individuals, healthcare experts and physicians to find the right smart device that best matches their requirements or treatments. The purpose of this research is to propose a framework for a recommender system to advise on the best device for the patient using machine learning algorithms and social media sentiment analysis. This approach will provide great value for patients, doctors, medical centers, and hospitals to enable them to provide the best advice and guidance in allocating the device for that particular time in the treatment process.

Design/methodology/approach

This data-driven approach comprises multiple stages that lead to classifying the diseases that a patient is currently facing or is at risk of facing by using and comparing the results of various machine learning algorithms. Hereupon, the proposed recommender framework aggregates the specifications of wearable IoT devices along with the image of the wearable product, which is the extracted user perception shared on social media after applying sentiment analysis. Lastly, a proposed computation with the use of a genetic algorithm was used to compute all the collected data and to recommend the wearable IoT device recommendation for a patient.

Findings

The proposed conceptual framework illustrates how health record data, diseases, wearable devices, social media sentiment analysis and machine learning algorithms are interrelated to recommend the relevant wearable IoT devices for each patient. With the consultation of 15 physicians, each a specialist in their area, the proof-of-concept implementation result shows an accuracy rate of up to 95% using 17 settings of machine learning algorithms over multiple disease-detection stages. Social media sentiment analysis was computed at 76% accuracy. To reach the final optimized result for each patient, the proposed formula using a Genetic Algorithm has been tested and its results presented.

Research limitations/implications

The research data were limited to recommendations for the best wearable devices for five types of patient diseases. The authors could not compare the results of this research with other studies because of the novelty of the proposed framework and, as such, the lack of available relevant research.

Practical implications

The emerging trend of wearable IoT devices is having a significant impact on the lifestyle of people. The interest in healthcare and well-being is a major driver of this growth. This framework can help in accelerating the transformation of smart hospitals and can assist doctors in finding and suggesting the right wearable IoT for their patients smartly and efficiently during treatment for various diseases. Furthermore, wearable device manufacturers can also use the outcome of the proposed platform to develop personalized wearable devices for patients in the future.

Originality/value

In this study, by considering patient health, disease-detection algorithm, wearable and IoT social media sentiment analysis, and healthcare wearable device dataset, we were able to propose and test a framework for the intelligent recommendation of wearable and IoT devices helping healthcare professionals and patients find wearable devices with a better understanding of their demands and experiences.

Article
Publication date: 13 September 2023

Mohit Jamwal, Honey Kanojia and Neeraj Dhiman

Wearable medical devices (WMDs) are improving people’s health and well-being in a noble way, as these aid in effective personal health monitoring, remote surveillance and overall…

Abstract

Purpose

Wearable medical devices (WMDs) are improving people’s health and well-being in a noble way, as these aid in effective personal health monitoring, remote surveillance and overall illness management. Despite its wider applicability and usage, it is prevalent that users discontinue its usage, which presents an obstacle in the proliferation of such vital innovations among the masses. Therefore, relying on the expectation-confirmation model (ECM), this study aims to delve deeper to explain the factors that motivate users to continually use WMDs by incorporating novel variables, namely, health belief, health information accuracy and privacy protection.

Design/methodology/approach

The study proposes and tests an extended ECM perspective to predict the continuance intention (CI) of WMDs among users. By using structural equation modelling using SmartPLS, the authors tested the model on Indian people (n = 451) who had an erstwhile experience of using WMDs.

Findings

The study results show that confirmation of users’ expectations positively impacts their usefulness and satisfaction towards WMDs. Moreover, satisfaction towards WMDs is the strongest predictor of users’ CI, followed by perceived usefulness. Interestingly, personal factor such as health beliefs reveals a greater influence on perceived usefulness than technological factors like health information accuracy and privacy protection.

Research limitations/implications

The study findings demonstrate the significance of using the expectation-confirmation perspective in technology-based studies in general and WMDs, in particular. This study aids by offering an integrated model of WMD’s continued usage intention for the users, in addition to practical implications for marketers and policymakers.

Originality/value

A paucity of research exists when understanding the predictors of CI for WMDs. This study fills this gap and adds to behavioural literature by offering a noble viewpoint involving an extended ECM perspective.

Details

International Journal of Pharmaceutical and Healthcare Marketing, vol. 18 no. 1
Type: Research Article
ISSN: 1750-6123

Keywords

Article
Publication date: 25 May 2022

Rameesh Lakshan Bulathsinghala, Serosha Mandika Wijeyaratne, Sandun Fernando, Thantirige Sanath Siroshana Jayawardana, Vishvanath Uthpala Indrajith Senadhipathi Mudiyanselage and Samith Lakshan Sunilsantha Kankanamalage

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically…

Abstract

Purpose

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically for diabetic patients to identify the possibility of foot ulceration at the early stage.

Design/methodology/approach

The prototype can measure blood volumetric change and temperature variation in the forefoot area simultaneously. The waveform extracted using a pulsatile-blood-flow signal was used to assess blood perfusion-related information, and hence, predict ischemic ulcers. The temperature difference between ulcerated and the reference was used to predict neuropathic ulcers. The medical device can be used as a bandage during the application wherein the sensory module is placed inside the hollow pocket of the bandage. A platform was developed through a mobile application where doctors can extract real-time information, and hence, determine the possibility of ulceration.

Findings

The height of the peaks in the pulsatile-blood-flow signal measured from the subject with foot ischemic ulcers is significantly less than that of the subject without ischemic ulcers. In the presence of ischemic ulcers, the captured waveform flattens. Therefore, the blood perfusion from arteries to the tissue of the forefoot is considerably low for the subject with ischemic ulcers. According to the temperature difference data measured over 25 consecutive days, the temperature difference of the subject with neuropathic ulcers occasionally exceeded the 4 °F range but mostly had higher values closer to the 4 °F range. However, the temperature difference of the subject who had no complications of neuropathic ulcers did not exceed the 4 °F range, and the majority of the measurements occupy a narrow range from −2°F to 2 °F.

Originality/value

The proposed prototype of wearable medical apparatus can monitor both temperature variation and pulsatile-blood-flow signal on the forefoot simultaneously and thereby predict both ischemic and neuropathic diabetes using a single device. Most importantly, the wearable medical device can be used domestically without clinical assistance with a real-time data monitoring platform to predict the possibility of ulceration and the course of action thereof.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 December 2021

Aarthy Prabakaran and Elizabeth Rufus

Wearables are gaining prominence in the health-care industry and their use is growing. The elderly and other patients can use these wearables to monitor their vitals at home and…

Abstract

Purpose

Wearables are gaining prominence in the health-care industry and their use is growing. The elderly and other patients can use these wearables to monitor their vitals at home and have them sent to their doctors for feedback. Many studies are being conducted to improve wearable health-care monitoring systems to obtain clinically relevant diagnoses. The accuracy of this system is limited by several challenges, such as motion artifacts (MA), power line interference, false detection and acquiring vitals using dry electrodes. This paper aims to focus on wearable health-care monitoring systems in the literature and provides the effect of MA on the wearable system. Also presents the problems faced while tracking the vitals of users.

Design/methodology/approach

MA is a major concern and certainly needs to be suppressed. An analysis of the causes and effects of MA on wearable monitoring systems is conducted. Also, a study from the literature on motion artifact detection and reduction is carried out and presented here. The benefits of a machine learning algorithm in a wearable monitoring system are also presented. Finally, distinct applications of the wearable monitoring system have been explored.

Findings

According to the study reduction of MA and multiple sensor data fusion increases the accuracy of wearable monitoring systems.

Originality/value

This study also presents the outlines of design modification of dry/non-contact electrodes to minimize the MA. Also, discussed few approaches to design an efficient wearable health-care monitoring system.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 August 2021

Shweta Pandey, Deepak Chawla, Sandeep Puri and Luz Suplico Jeong

Notwithstanding the novelty and importance of wearable fitness devices, few studies have focussed on comparing the drivers of adoption and usage of wearable fitness in the context…

Abstract

Purpose

Notwithstanding the novelty and importance of wearable fitness devices, few studies have focussed on comparing the drivers of adoption and usage of wearable fitness in the context of developing countries. This study aims to explore factors that drive overall acceptance of wearable fitness devices in developing countries (India and the Philippines) and whether the impact of these factors on the intention to adopt (INT) differs by country and gender.

Design/methodology/approach

The study extends the existing body of knowledge by developing a model that integrates the impact of various perceived benefits (health, autonomy, social, hedonic, symbolic), health self-efficacy (HEALTHSE) and individual characteristics (technological innovativeness [TI]) on the INT wearable fitness devices and the moderating impact of country and gender. The analysis was carried out using partial least square and data of 343 respondents.

Findings

This study finds that the INT wearable fitness devices by consumers in developing countries are positively impacted by hedonic, health and autonomy, HEALTHSE and TI. Symbolic and social factors do not have any significant impact on the overall INT wearable fitness devices. However, there are country and gender-specific differences that are consequential to the development of marketing strategies.

Research limitations/implications

The framework and results are specific to the two countries and limited by convenience sampling. Future research can focus on replication across different countries and extend the model with additional contextual factors such as perceived risks.

Originality/value

To the best knowledge of the authors, this is one of the few studies to examine and compare the drivers of adoption of wearable fitness devices in lesser researched developing countries. Also, it is one of the few studies to compare the moderating impact of country and gender in the context of the INT wearable devices. The study provides a theoretical and methodological foundation for future research, as well as practical implications for global companies developing and promoting wearable fitness devices.

Details

Journal of Asia Business Studies, vol. 16 no. 4
Type: Research Article
ISSN: 1558-7894

Keywords

Article
Publication date: 4 August 2021

Cynthia Mejia, Katherine Ciarlante and Kinjal Chheda

Adopting an interdisciplinary perspective, the purpose of this paper was to posit an industry-wide technological intervention for hotel housekeeper safety and health through the…

1330

Abstract

Purpose

Adopting an interdisciplinary perspective, the purpose of this paper was to posit an industry-wide technological intervention for hotel housekeeper safety and health through the advancement of wearable technology.

Design/methodology/approach

Using the task-technology fit (TTF) model and examples of successful safety and health applications of wearable technologies in the health-care and construction management industries, interventions and future research directions are presented to address workplace hazards experienced by hotel housekeepers.

Findings

The fit between a variety of hotel housekeeper user requirements, task demands and wearable functions are explored with justification for the use of wearable devices to improve safety and health-related outcomes.

Research limitations/implications

A research agenda is proposed for the adoption and use of wearables in the hospitality industry with the intention to generate meaningful interventions beyond corporate wellness, and the mitigation of employee privacy concerns to enhance wearable adoption.

Practical implications

Given the importance of consumer safety and health assurance in a post-pandemic business environment, hospitality and tourism organizations should place greater emphasis on protecting front line employees who will be essential in regaining economic viability.

Social implications

Theoretical and practical foci should move beyond a simplistic view of hospitality and tourism worker safety and health that generally centers on wellness initiatives and other baseline strategies, toward a more holistic view benefitting the hospitality industry.

Originality/value

Extant concerns about hotel housekeeper safety and health, in addition to new concerns and threats in a post-pandemic work environment, are largely understudied and worthy of investigation.

Details

International Journal of Contemporary Hospitality Management, vol. 33 no. 10
Type: Research Article
ISSN: 0959-6119

Keywords

Abstract

Details

SDG3 – Good Health and Wellbeing: Re-Calibrating the SDG Agenda: Concise Guides to the United Nations Sustainable Development Goals
Type: Book
ISBN: 978-1-78973-709-7

Open Access
Article
Publication date: 27 June 2023

Kabir Ibrahim, Fredrick Simpeh and Oluseyi Julius Adebowale

Technologies have had a positive impact on the construction industry. Technologies such as BIM, automation, augmented and virtual reality, Internet of Things and robotics have…

Abstract

Purpose

Technologies have had a positive impact on the construction industry. Technologies such as BIM, automation, augmented and virtual reality, Internet of Things and robotics have been adopted by construction firms to enhance productivity. However, not much research has been done on the awareness and adoption of wearable technologies for health and safety (H&S) management. This paper investigates the level of awareness and adoption of wearable technologies for H&S management in the Nigerian construction industry.

Design/methodology/approach

A quantitative research method was adopted for the study. An electronic questionnaire format was used as an instrument to collect the data. Both descriptive (mean score) and inferential statistics (Kruskal–Wallis test) were used to analyse the data.

Findings

The results indicate that organisations rarely use H&S wearable devices for H&S management although professionals within the construction industry are somewhat aware of the common H&S wearable devices. The findings further indicate that all 11 variables were perceived as “rarely adopted”, whereas 2 variables were perceived as “aware”, 3 variables as “slightly aware” and the remaining 6 variables as “somewhat aware”.

Research limitations/implications

Data were collected from only construction professionals working in government agencies, consultancy firms and grade D contracting firms in Lagos and Abuja. For a broader perspective, a study that expands the number of states and categories of construction firms is recommended.

Practical implications

The construction industry in Nigeria can use the recommendations to improve H&S management on site. Moreover, the recommendations can contribute to the development of policies to promote the adoption of wearable technologies in construction sites.

Originality/value

Research on wearable technologies, particularly in the Nigerian construction industry, is at the developing stage. With this article, the authors contribute to the body of knowledge in this area of research.

Details

Frontiers in Engineering and Built Environment, vol. 4 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

1 – 10 of over 1000