Search results

1 – 10 of over 4000
Article
Publication date: 17 April 2024

Rafiu King Raji, Jian Lin Han, Zixing Li and Lihua Gong

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart

Abstract

Purpose

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart garments and other smart wearables such as wrist watches and wrist bands. The purpose of this study is to fill this knowledge gap by discussing issues regarding smart shoe sensing technologies, smart shoe sensor placements, factors that affect sensor placements and finally the areas of smart shoe applications.

Design/methodology/approach

Through a review of relevant literature, this study first and foremost attempts to explain what constitutes a smart shoe and subsequently discusses the current trends in smart shoe applications. Discussed in this study are relevant sensing technologies, sensor placement and areas of smart shoe applications.

Findings

This study outlined 13 important areas of smart shoe applications. It also uncovered that majority of smart shoe functionality are physical activity tracking, health rehabilitation and ambulation assistance for the blind. Also highlighted in this review are some of the bottlenecks of smart shoe development.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review paper focused on smart shoe applications, and therefore serves as an apt reference for researchers within the field of smart footwear.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Yini Wei, Guiqiang Diao and Zilun Tang

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in…

Abstract

Purpose

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in terms of articles meant to be worn, their prominence among devices and systems meant for cadence is overshadowed by electronic products such as accelerometers, wristbands and smart phones. Athletes and sports enthusiasts using knee sleeves should be able to track their performances and monitor workout progress without the need to carry other devices with no direct sport utility, such as wristbands and wearable accelerometers. The purpose of this study thus is to contribute to the broad area of wearable devices for cadence application by developing a cheap but effective and efficient stride measurement system based on a knee sleeve.

Design/methodology/approach

A textile strain sensor is designed by weft knitting silver-plated nylon yarn together with nylon DTY and covered elastic yarn using a 1 × 1 rib structure. The area occupied by the silver-plated yarn within the structure served as the strain sensor. It worked such that, upon being subjected to stress, the electrical resistance of the sensor increases and in turn, is restored when the stress is removed. The strip with the sensor is knitted separately and subsequently sewn to the knee sleeve. The knee sleeve is then connected to a custom-made signal acquisition and processing system. A volunteer was employed for a wearer trial.

Findings

Experimental results establish that the number of strides taken by the wearer can easily be correlated to the knee flexion and extension cycles of the wearer. The number of peaks computed by the signal acquisition and processing system is therefore counted to represent stride per minute. Therefore, the sensor is able to effectively count the number of strides taken by the user per minute. The coefficient of variation of over-ground test results yielded 0.03%, and stair climbing also obtained 0.14%, an indication of very high sensor repeatability.

Research limitations/implications

The study was conducted using limited number of volunteers for the wearer trials.

Practical implications

By embedding textile piezoresistive sensors in some specific garments and or accessories, physical activity such as gait and its related data can be effectively measured.

Originality/value

To the best of our knowledge, this is the first application of piezoresistive sensing in the knee sleeve for stride estimation. Also, this study establishes that it is possible to attach (sew) already-knit textile strain sensors to apparel to effectuate smart functionality.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 August 2021

Hongjoo Woo and Sanghee Kim

The purpose of this study is to examine the effects of brand and message framing on consumers’ evaluations and purchase intentions of smart health-care clothing. The study also…

Abstract

Purpose

The purpose of this study is to examine the effects of brand and message framing on consumers’ evaluations and purchase intentions of smart health-care clothing. The study also examines the mediating effect of consumers’ evaluations on the effects of the brand and message framing on purchase intentions.

Design/methodology/approach

Through an experimental approach, a total of 240 US consumers’ evaluation of smart health-care clothing is compared according to the existence of a well-known brand (vs. none) and message framing (technology-focused vs. fashion-focused).

Findings

The results show that consumer evaluation of smart health-care clothing is higher when the product is from a well-known brand, where consumers’ fashion consciousness and health consciousness positively influence such an evaluation as covariates. Message framing, however, did not have an influence that revealed any significant difference between technology-focused and fashion-focused messages. The consumer’s evaluation of smart health-care clothing eventually increased their purchase intentions and mediated the effects of brand on purchase intentions.

Originality/value

Smart health-care clothing refers to clothing that measures, records and manages the user’s activity and health status through conductive fibers or sensors that are woven in the clothes. Despite its benefits, smart health-care clothing is still not widely adopted among consumers, except for a few successful examples. Closing this gap, the results of this study provide implications regarding whether and how brand and message framing maximize consumers’ evaluations toward smart health-care clothing, which the developers and marketers of such products can use to increase the product’s market penetration.

Details

Journal of Product & Brand Management, vol. 31 no. 4
Type: Research Article
ISSN: 1061-0421

Keywords

Article
Publication date: 5 June 2017

Robert Radziszewski, Hubert Kenfack Ngankam, Vincent Grégoire, Dominique Lorrain, Hélène Pigot and Sylvain Giroux

Assistive living technologies provide support for specific activities, transforming a home into a smart home. The purpose of this paper is to present how to design, implement…

Abstract

Purpose

Assistive living technologies provide support for specific activities, transforming a home into a smart home. The purpose of this paper is to present how to design, implement, deploy and install a personalized ambient support system for the elderly suffering from Alzheimer’s disease (AD) and nighttime wandering.

Design/methodology/approach

The intervention presented in this paper proceeds in two phases. During the monitoring phase, the system determines the profile of the person with AD, based on nighttime routines. Data are gathered from sensors dispatched in the smart home, coupled with physiological data obtained from sensors worn by the person. Data are then classified to determine engine rules that will provide assistance to the resident to satisfy their needs. During the second phase, smart assistance is provided to the person via environmental cues by triggering rules based on the person’s habits and the activities occurring during night.

Findings

The paper develops the architecture of a non-intrusive system that integrates heterogeneous technologies to provide a calm environment during night and limit wandering periods.

Practical implications

The goal is to help people age well at home as long as possible and recover a regular circadian cycle while providing more comfort to the caregiver.

Originality/value

The system presented in this paper offers a calm and personalized environment with music and visual icons to soothe persons with AD and encourage them to go back to bed. It is installed at the patient’s home using wireless technologies.

Details

International Journal of Pervasive Computing and Communications, vol. 13 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 24 October 2023

WenFeng Qin, Yunsheng Xue, Hao Peng, Gang Li, Wang Chen, Xin Zhao, Jie Pang and Bin Zhou

The purpose of this study is to design a wearable medical device as a human care platform and to introduce the design details, key technologies and practical implementation…

Abstract

Purpose

The purpose of this study is to design a wearable medical device as a human care platform and to introduce the design details, key technologies and practical implementation methods of the system.

Design/methodology/approach

A multi-channel data acquisition scheme based on PCI-E (rapid interconnection of peripheral components) was proposed. The flexible biosensor is integrated with the flexible data acquisition card with monitoring capability, and the embedded (device that can operate independently) chip STM32F103VET6 is used to realize the simultaneous processing of multi-channel human health parameters. The human health parameters were transferred to the upper computer LabVIEW by intelligent clothing through USB or wireless Bluetooth to complete the transmission and processing of clinical data, which facilitates the analysis of medical data.

Findings

The smart clothing provides a mobile medical cloud platform for wearable medical through cloud computing, which can continuously monitor the body's wrist movement, body temperature and perspiration for 24 h. The result shows that each channel is completely accurate to the top computer display, which can meet the expected requirements, and the wearable instant care system can be applied to healthcare.

Originality/value

The smart clothing in this study is based on the monitoring and diagnosis of textiles, and the electronic communication devices can cooperate and interact to form a wearable textile system that provides medical monitoring and prevention services to individuals in the fastest and most accurate way. Each channel of the system is precisely matched to the display screen of the host computer and meets the expected requirements. As a real-time human health protection platform technology, continuous monitoring of human vital signs can complete the application of human motion detection, medical health monitoring and human–computer interaction. Ultimately, such an intelligent garment will become an integral part of our everyday clothing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 August 2020

Wilson Kia Onn Wong

This paper examines the methodical and highly efficacious manner in which China deployed its comprehensive AI (artificial intelligence) strategy to significantly stymie the spread…

1151

Abstract

Purpose

This paper examines the methodical and highly efficacious manner in which China deployed its comprehensive AI (artificial intelligence) strategy to significantly stymie the spread of COVID-19 across the country.

Design/methodology/approach

This study deploys a case-study approach, supported by the literature on existing and emerging AI and related technologies.

Findings

The onset of the COVID-19 pandemic has revealed to the world the remarkable progress China has made in AI and its accompanying ecosystem. More importantly, this outlier event demonstrates the surgical, hybridised manner in which China has utilised these emerging technologies in containing its spread (i.e. “AI Epidemiological Targeting”) and set itself on the path to unleashing their full potential (i.e. “AI Symbiosis Paradigm”). Nonetheless, China still needs to harness its rapidly advancing AI prowess in identifying COVID-19's pathogenesis and developing a proven vaccine.

Originality/value

This study presents a pioneering effort to analyse the deployment of AI and its ecosystem in the “war” against COVID-19.

Details

Asian Education and Development Studies, vol. 10 no. 2
Type: Research Article
ISSN: 2046-3162

Keywords

Article
Publication date: 26 April 2018

Weizhen Wang, Yukari Nagai, Yuan Fang and Masami Maekawa

The purpose of this paper is to bridge the gap between human emotions and wearable technologies for interactive fashion innovation. To consider the reasons why smart clothing…

1536

Abstract

Purpose

The purpose of this paper is to bridge the gap between human emotions and wearable technologies for interactive fashion innovation. To consider the reasons why smart clothing should satisfy the internet of things (IoT) technical functions and human emotional expression simultaneously, to investigate the manner in which artistic design perspectives and engineering methods combined effectively, to explore the R&D elements of future smart clothing based on the IoT technology.

Design/methodology/approach

This study combines artistic design perspectives with information-sensing engineering methods as well as kansei evaluation method. Micro-sensors and light-emitting diodes (LEDs) embedded in couples clothing prototype. The first experiment step in the design and production of prototype clothing, and do the initial emotional evaluation. The second experiment is the comparative evaluation of the prototype and other typical smart clothing.

Findings

The interactive clothing prototype was proven to correlate well with human emotional expressive patterns. The evaluation I indicated the prototype can stimulate the emotional response of the participants to achieve a higher score in the activate sensor state. Evaluation II revealed that in the process of interactive clothing design, the technical functionality should synchronize with the requirements of human emotional expression.

Originality/value

This study builds the research and development theoretical model of interactive clothing that can be integrated into daily smart clothing life design, and analyze the methods and means of blending IoT smart information-sensing technology with emotional design. By means of this experimental demonstration of human-centered interactive clothing design, the authors provide smart clothing 3.0 evolutionary roadmap and propose a new concept of internet of clothes (IoC) for further research reference.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 January 2024

Ali Rashidi, George Lukic Woon, Miyami Dasandara, Mohsen Bazghaleh and Pooria Pasbakhsh

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers…

Abstract

Purpose

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers at a job site are paramount as they face both immediate and long-term risks such as falls and musculoskeletal disorders. To mitigate these dangers, sensor-based technologies have emerged as a crucial tool to promote the safety and well-being of workers on site. The implementation of real-time sensor data-driven monitoring tools can greatly benefit the construction industry by enabling the early identification and prevention of potential construction accidents. This study aims to explore the innovative method of prototype development regarding a safety monitoring system in the form of smart personal protective equipment (PPE) by taking advantage of the recent advances in wearable technology and cloud computing.

Design/methodology/approach

The proposed smart construction safety system has been meticulously crafted to seamlessly integrate with conventional safety gear, such as gloves and vests, to continuously monitor construction sites for potential hazards. This state-of-the-art system is primarily geared towards mitigating musculoskeletal disorders and preventing workers from inadvertently entering high-risk zones where falls or exposure to extreme temperatures could occur. The wearables were introduced through the proposed system in a non-intrusive manner where the safety vest and gloves were chosen as the base for the PPE as almost every construction worker would be required to wear them on site. Sensors were integrated into the PPE, and a smartphone application which is called SOTER was developed to view and interact with collected data. This study discusses the method and process of smart PPE system design and development process in software and hardware aspects.

Findings

This research study posits a smart system for PPE that utilises real-time sensor data collection to improve worksite safety and promote worker well-being. The study outlines the development process of a prototype that records crucial real-time data such as worker location, altitude, temperature and hand pressure while handling various construction objects. The collected data are automatically uploaded to a cloud service, allowing supervisors to monitor it through a user-friendly smartphone application. The worker tracking ability with the smart PPE can help to alleviate the identified issues by functioning as an active warning system to the construction safety management team. It is steadily evident that the proposed smart PPE system can be utilised by the respective industry practitioners to ensure the workers' safety and well-being at construction sites through monitoring of the workers with real-time sensor data.

Originality/value

The proposed smart PPE system assists in reducing the safety risks posed by hazardous environments as well as preventing a certain degree of musculoskeletal problems for workers. Ultimately, the current study unveils that the construction industry can utilise cloud computing services in conjunction with smart PPE to take advantage of the recent advances in novel technological avenues and bring construction safety management to a new level. The study significantly contributes to the prevailing knowledge of construction safety management in terms of applying sensor-based technologies in upskilling construction workers' safety in terms of real-time safety monitoring and safety knowledge sharing.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 14 June 2022

Niromi Seram and Githmi Deshani Samarasekara

The person who works in an office starts his or her day with a choice of attire. The way they look in the office depends on the decisions they make on their clothes. This study…

Abstract

Purpose

The person who works in an office starts his or her day with a choice of attire. The way they look in the office depends on the decisions they make on their clothes. This study aims to identify the challenges faced by employees in the management positions in the Sri Lankan apparel industry who regularly come into contact with customers when they have to decide upon the most appropriate work attire for the position they are occupying in their organization.

Design/methodology/approach

Collection of data was primarily achieved through a well-structured questionnaire containing a mixture of open- and closed-ended questions. Targeted employees were managers, designers and merchandisers belonging to Generation Y whose total number was sufficient to obtain 50 feedbacks. Six more interviews were conducted with the intention of finding out more about this matter.

Findings

The majority of employees in the management positions in the Sri Lankan apparel industry who have regular contact with customers prefer to dress in “smart casual attire”, which means semi-formal clothes. Lack of availability of certain varieties of business attire in Sri Lanka proved to be a major challenge for some employees. Overpriced clothing, less comfortable clothing and lack of the right fabrics and designs were also challenges. These findings highlight the importance of manufacturing a wider variety of business attire using moderately priced but comfortable fabrics to make affordable and good quality products. There is a need to have a persuasive merchandising method to achieve good sales and provide a pleasant shopping experience to the customers.

Originality/value

Sri Lankan workwear retailers as well as apparel designers can benefit from the findings of this research as there is no evidence of any other studies on this subject. Therefore, this will help them to fill the market gap for business attire by addressing these challenges.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 6 December 2021

Soyoung Kim, Kyunghi Hong and Heeran Lee

This study aims to provide information on how to monitor the temperature setting of a heating device in order to implement a heating unit successfully in the smart clothing by…

Abstract

Purpose

This study aims to provide information on how to monitor the temperature setting of a heating device in order to implement a heating unit successfully in the smart clothing by observing voluntary heating behavior of wearers.

Design/methodology/approach

Subjects wearing base layers and additional clothing were asked to turn on and off the switch when wanted in the cold environmental chamber. Tolerable range of skin temperature (TST) depending on the location of body was obtained by observing the temperature at the time when the heating device was turned on and off during a rest–running–rest protocol.

Findings

The TST was 32.8–49.4 °C and decreased to 31.3–37.6 °C around abdomen and back waist, respectively. Changes in the wearers' voluntary control behavior were observed depending on the individual's level of cold-sensitivity and activity level of rest and running. TST was 35.8–49.4 °C (Rest 1: rest before exercise), 40.0–42.0 °C (Running) and 35.3–43.2 °C (Rest 2: rest after exercise) for cold-sensitive group, whereas it was 32.8–36.2 °C (Running) and 34.4–45.7 °C (Rest 2: rest after exercise) for cold-insensitive group.

Originality/value

In this study, results with detailed body locations and wearer's thermal sensitivity provide practical references for the implementation of a heating device to the comfortable multilayered smart clothing.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 4000