Search results

1 – 10 of 235
Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 April 2024

Abhishek Barwar, Prateek Kala and Rupinder Singh

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery…

Abstract

Purpose

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery complications. But hitherto little has been reported on bibliographic analysis (BA) for health monitoring of bovine post-DH surgery for long-term management. Based on BA, this study aims to explore the sensor fabrication integrated with innovative AM technologies for health monitoring assistance of bovines post-DH surgery.

Design/methodology/approach

A BA based on the data extracted through the Web of Science database was performed using bibliometric tools (R-Studio and Biblioshiny).

Findings

After going through the BA and a case study, this review provides information on various 3D-printed meshes used over the sutured site and available Internet of Things-based solutions to prevent the recurrence of DH.

Originality/value

Research gaps exist for 3D-printed conformal sensors for health monitoring of bovine post-DH surgery.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 April 2024

Zhen Li, Jianqing Han, Mingrui Zhao, Yongbo Zhang, Yanzhe Wang, Cong Zhang and Lin Chang

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes…

Abstract

Purpose

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes. Through experimental verification, the effectiveness of the theoretical model in evaluating CI sensors equipped with shielding electrodes has been demonstrated.

Design/methodology/approach

The study begins by incorporating the interelectrode shielding and surrounding shielding electrodes of CI sensors into the theoretical model. A method for deriving the semianalytical model is proposed, using the renormalization group method and physical model. Based on random geometric parameters of CI sensors, capacitance values are calculated using both simulation models and theoretical models. Three different types of CI sensors with varying geometric parameters are designed and manufactured for experimental testing.

Findings

The study’s results indicate that the errors of the semianalytical model for the CI sensor are predominantly below 5%, with all errors falling below 10%. This suggests that the semianalytical model, derived using the renormalization group method, effectively evaluates CI sensors equipped with shielding electrodes. The experimental results demonstrate the efficacy of the theoretical model in accurately predicting the capacitance values of the CI sensors.

Originality/value

The theoretical model of CI sensors is described by incorporating the interelectrode shielding and surrounding shielding electrodes into the model. This comprehensive approach allows for a more accurate evaluation of the detecting capability of CI sensors, as well as optimization of their performance.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2005

Zengxi Pan and Zhenqi Zhu

This paper aims to design a new full‐body tactile sensor which is essential for the application of personal service robot similar to human skin.

Abstract

Purpose

This paper aims to design a new full‐body tactile sensor which is essential for the application of personal service robot similar to human skin.

Design/methodology/approach

The largest difficulty for designing a full‐body tactile sensor is the huge number of output connections. The sensor introduced in this paper is a special multi‐layer structure, which could minimize the output connections while sensing both the position and force information. Since it is made of conductive and non‐conductive textiles, the sensor could be used to cover the curved surface of robot body.

Findings

With better structure design, output connectors and signal measurement times could be dramatically reduced.

Research limitations/implications

Sensor area and performance are limited by the sensitivity of the measurement circuits.

Originality/value

Introduces an innovate design of full‐body tactile sensor.

Details

Industrial Robot: An International Journal, vol. 32 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 October 2014

Richard Tarparelli, Renato Iovine, Luigi La Spada and Lucio Vegni

– The purpose of this paper is to contribute an analytical and numerical study of a new type of nanoshell particles operating in the visible regime.

Abstract

Purpose

The purpose of this paper is to contribute an analytical and numerical study of a new type of nanoshell particles operating in the visible regime.

Design/methodology/approach

The structure consists of a core/shell particle, arranged in a planar array configuration, with a polymethyl methacrylate (PMMA)-graphene core and gold thin shell.

Findings

By exploiting the proposed analytical model the design of a metamaterial-based sensor, operating in the optical frequency range, for the detection of tissue diseases is shown.

Originality/value

Full-wave simulations confirm the capability of the proposed sensor to identify different compounds by refractive index measurement.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 May 2012

Martin Goosey

The purpose of this paper is to present an introductory overview of graphene, its properties and potential for use in interconnection applications.

Abstract

Purpose

The purpose of this paper is to present an introductory overview of graphene, its properties and potential for use in interconnection applications.

Design/methodology/approach

This short paper has been written to provide those working on interconnect applications in the PCB and semiconductor sectors with an introductory overview of graphene and its properties. This has been achieved through a review of the published literature.

Findings

Graphene has unique properties that make it of interest for potential use in interconnection applications and, in the last few years, some workers have begun to demonstrate the possibilities for this novel material.

Research limitations/implications

This is a short introductory paper and only gives a limited overview of graphene, its properties and applications. It is based on information published in the literature and, while some examples are cited, it does not represent a comprehensive review.

Originality/value

The paper seeks to give an overview of what graphene is and how its unique properties offer potential for interconnection related applications. References provide the opportunity to investigate the properties of this material in more detail.

Details

Circuit World, vol. 38 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 9 September 2013

Renato Iovine, Luigi La Spada and Lucio Vegni

– In this contribution, the aim is to present a nanoparticle device, operating in the visible regime based on the localized surface plasmon resonance (LSPR) phenomenon.

Abstract

Purpose

In this contribution, the aim is to present a nanoparticle device, operating in the visible regime based on the localized surface plasmon resonance (LSPR) phenomenon.

Design/methodology/approach

The nanoparticle electromagnetic properties are evaluated by a new analytical model and compared to the results obtained by numerical analysis.

Findings

A near-field enhancement is obtained by arranging the nanoparticles in a linear array. Analytical formulas, describing such enhancement, are presented.

Originality/value

The results demonstrate the possibility to use the proposed device for medical diagnostics and optoelectronics applications.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 April 2024

Xiangkai Zhang, Renxin Wang, Wenping Cao, Guochang Liu, Haoyu Tan, Haoxuan Li, Jiaxing Wu, Guojun Zhang and Wendong Zhang

Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals…

Abstract

Purpose

Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals can achieve long-distance propagation in water. To meet the requirements of long-distance underwater detection and communication, this paper aims to propose an micro-electro-mechanical system (MEMS) flexible conformal hydrophone for low-frequency underwater acoustic signals. The substrate of the proposed hydrophone is polyimide, with silicon as the piezoresistive unit.

Design/methodology/approach

This paper proposes a MEMS heterojunction integration process for preparing flexible conformal hydrophones. In addition, sensors prepared based on this process are non-contact flexible sensors that can detect weak signals or small deformations.

Findings

The experimental results indicate that making devices with this process cannot only achieve heterogeneous integration of silicon film, metal wire and polyimide, but also allow for customized positions of the silicon film as needed. The success rate of silicon film transfer printing is over 95%. When a stress of 1 Pa is applied on the x-axis or y-axis, the maximum stress on Si as a pie-zoresistive material is above, and the average stress on the Si film is around.

Originality/value

The flexible conformal vector hydrophone prepared by heterogeneous integration technology provides ideas for underwater acoustic communication and signal acquisition of biomimetic flexible robotic fish.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 August 2019

Joel Vasco, F.M. Barreiros, Andreia Nabais and Nilza Reis

The purpose of this study is to compare the overall performance of the injection moulding process by using metallic inserts produced by both conventional technologies and…

Abstract

Purpose

The purpose of this study is to compare the overall performance of the injection moulding process by using metallic inserts produced by both conventional technologies and selective laser melting (SLM).

Design/methodology/approach

A systematic methodology is proposed for prior evaluation of the effectiveness of conformal cooling channels to reduce cycle time and/or to reduce the scrap rate.

Findings

The mould was reengineered considering the SLM process and manufactured. Injection trials were carried out to validate expectations provided by injection simulations, which resulted on good quality parts and a significant decrease on cooling time, and, consequently, on the overall cycle time. The minimisation of scrap provided energy savings and time-to-market reduction.

Research limitations/implications

The initial costs for AM tools still pose some doubts on decision-makers. The challenge of this study is to implement the methodology on a small-scale production and still ensure that benefits are achieved.

Practical implications

The case study selected for this research work is based on a parking sensor housing, which is a plastic part assembled on the vehicle’s front and rear bumpers, therefore, with aesthetics concerns. The part produced with the conventional mould exhibits surface defects that, to be minimised (not eliminated), require a longer packing time to diminish the sink marks.

Social implications

The economic impact of the use of SLM is relevant despite the low batch size for the case study presented. Energy savings are achieved due to scrap reduction and shorter cycle time.

Originality/value

The systematic methodology proposed for prior evaluation of the advantages of conformal cooling is possible to be applied both on small scale and high production series.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2013

Neal de Beer and André van der Merwe

The purpose of this paper is to develop a process chain for design and manufacture of endplates of intervertebral disc implants, with specific emphasis on designing footprint…

Abstract

Purpose

The purpose of this paper is to develop a process chain for design and manufacture of endplates of intervertebral disc implants, with specific emphasis on designing footprint profiles and matching endplate geometry.

Design/methodology/approach

Existing techniques for acquiring patient‐specific information from CT scan data was and a user‐friendly software solution was developed to facilitate pre‐surgical planning and semi‐automated design. The steps in the process chain were validated experimentally by manufacturing Ti6Al4 V endplates by means of Direct Metal Laser Sintering to match vertebrae of a cadaver and were tested for accuracy of the implant‐to‐bone fitment.

Findings

Intervertebral disc endplates were successfully designed and rapid manufactured using a biocompatible material. Accuracy within 0.37 mm was achieved. User‐friendly, semi‐automated design software offers an opportunity for surgeons to become more easily involved in the design process and speeds up the process to more accurately develop a custom‐made implant.

Research limitations/implications

This research is limited to the design and manufacture of the bone‐implant contacting interface. Other design features, such as keels which are commonly used for implant fixation as well as the functionality of the implant joint mechanics were not considered as there may be several feasible design alternatives.

Practical implications

This research may change the way that current intervertebral disc implants are designed and manufactured.

Originality/value

Apart from other areas of application (cranial, maxillofacial, hip, knee, foot) and recent research on customized disc nucleus replacement, very little work has been done to develop patient‐specific implants for the spine. This research was conducted to contribute and provide much needed progress in this area of application.

1 – 10 of 235