Search results

1 – 10 of 55
Article
Publication date: 5 December 2023

Bheem Pratap and Pramod Kumar

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Abstract

Purpose

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Design/methodology/approach

The investigation involved studying the influence of partially replacing fly ash with ground granulated blast furnace slag (GGBS) at different proportions (5%, 10%, 15%, 20% and 25%) on the composition of the geopolymer. This approach aimed to examine how the addition of GGBS impacts the properties of the geopolymer material. The chemical NaOH was purchased from the local supplier of Jamshedpur. The alkali solution was prepared with a concentration of 12 M NaOH to produce the concrete. After several trials, the alkaline-to-binder ratio was determined to be 0.43.

Findings

The compressive strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 35.42 MPa, 41.26 MPa, 44.79 MPa, 50.51 MPa and 46.33 MPa, respectively. The flexural strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 5.31 MPa, 5.64 MPa, 6.12 MPa, 7.15 MPa and 6.48 MPa, respectively. The split tensile strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 2.82 MPa, 2.95 MPa, 3.14 MPa, 3.52 MPa and 3.31 MPa, respectively.

Originality/value

This approach allows for the examination of how the addition of GGBS affects the properties of the geopolymer material. Four different temperature levels were chosen for analysis: 100 °C, 300 °C, 500 °C and 700 °C. By subjecting the geopolymer samples to these elevated temperatures, the study aimed to observe any changes in their mechanical.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 September 2024

M. Vishal, K.S. Satyanarayanan, M. Prakash, Rakshit Srivastava and V. Thirumurugan

At this moment, there is substantial anxiety surrounding the fire safety of huge reinforced concrete (RC) constructions. The limitations enforced by test facilities, technology…

Abstract

Purpose

At this moment, there is substantial anxiety surrounding the fire safety of huge reinforced concrete (RC) constructions. The limitations enforced by test facilities, technology, and high costs have significantly limited both full-scale and scaled-down structural fire experiments. The behavior of an individual structural component can have an impact on the entire structural system when it is connected to it. This paper addresses the development and testing of a self-straining preloading setup that is used to perform thermomechanical action in RC beams and slabs.

Design/methodology/approach

Thermomechanical action is a combination of both structural loads and a high-temperature effect. Buildings undergo thermomechanical action when it is exposed to fire. RC beams and slabs are one of the predominant structural members. The conventional method of testing the beams and slabs under high temperatures will be performed by heating the specimens separately under the desired temperature, and then mechanical loading will be performed. This gives the residual strength of the beams and slabs under high temperatures. This method does not show the real-time behavior of the element under fire. In real-time, a fire occurs simultaneously when the structure is subjected to desired loads and this condition is called thermomechanical action. To satisfy this condition, a unique self-training test setup was prepared. The setup is based on the concept of a prestressing condition where the load is applied through the bolts.

Findings

To validate the test setup, two RC beams and slabs were used. The test setup was tested in service load range and a temperature of 300 °C. One of the beams and slabs was tested conventionally with four-point bending and point loading on the slab, and another beam and slab were tested using the preloading setup. The results indicate the successful operation of the developed self-strain preloading setup under thermomechanical action.

Research limitations/implications

Gaining insight into the unpredictable reaction of structural systems to fire is crucial for designing resilient structures that can withstand disasters. However, comprehending the instantaneous behavior might be a daunting undertaking as it necessitates extensive testing resources. Therefore, a thorough quantitative and qualitative numerical analysis could effectively evaluate the significance of this research.

Originality/value

The study was performed to validate the thermomechanical load setup for beams and slabs on a single-bay single-storey RC frame with and without slab under various fire possible scenarios. The thermomechanical load setup for RC members is found to be scarce.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 27 August 2024

Wei Li, Xiaoxuan Yang, Peng Wang, Zefeng Wen and Jian Han

This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit (EMU) train.

Abstract

Purpose

This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit (EMU) train.

Design/methodology/approach

A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling. Additionally, the dynamic characteristics of the track, wheelset and bogie were also measured. These measurements provided insights into the mechanisms that lead to wheel polygonization.

Findings

The results of the field tests indicate that wheel polygonal wear in the EMU train primarily exhibits 14–16 and 25–27 harmonic orders. The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz, which closely match the dominated frequencies of axle box and bogie vibrations. These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie, which can be excited by wheel/rail irregularities.

Originality/value

The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains. Futher, the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear, providing practical value for improving the safety, performance and maintenance efficiency of high-speed EMU trains.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 July 2024

Fatih Huzeyfe Öztürk

Adhesive bonding is critical to the effectiveness and structural integrity of 3D printed components. The purpose of this study is to investigate the effect of joint configuration…

Abstract

Purpose

Adhesive bonding is critical to the effectiveness and structural integrity of 3D printed components. The purpose of this study is to investigate the effect of joint configuration on failure loads to improve the design and performance of single lap joints (SLJs) in 3D printed parts.

Design/methodology/approach

In this study, adherends were fabricated using material extrusion 3D printing technology with polyethylene terephthalate glycol (PETG). A toughened methacrylate adhesive was chosen to bond the SLJs after adherend printing. In this study, response surface methodology (RSM) was used to examine the effect of the independent variables of failure load, manufacturing time and mass on the dependent variable of joint configuration; adherend thickness (3.2, 4.0, 4.8, 5.6, 6.4, and 7.2 mm) and overlap lengths (12.7, 25.4, 38.1, and 50.8 mm) of 3D printed PETG SLJs.

Findings

The strength of the joints improved significantly with the increase in overlap length and adherend thickness, although the relationship was not linear. The maximum failure load occurred with a thickness of 7.2 mm and an overlap of 50.8 mm, whilst the minimum failure load was determined with a thickness of 3.2 mm and an overlap of 12.7 mm. The RSM findings show that the optimum failure load was achieved with an adherend thickness of 3.6 mm and an overlap length of 37.9 mm for SLJ.

Originality/value

This study provides insight into the optimum failure load for 3D printed SLJs, reducing SLJ production time and mass, producing lightweight structures due to the nature of 3D printing, and increasing the use of these parts in load-bearing applications.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 September 2024

Souty Adel Nassef Beskhyroun and Mohamed Abdel-Aziz

This paper aims to assess the efficiency of emulsified essential oils in glycerol as eco-friendly antimicrobial and plasticized agents added to the biopolymer of gelatin for…

Abstract

Purpose

This paper aims to assess the efficiency of emulsified essential oils in glycerol as eco-friendly antimicrobial and plasticized agents added to the biopolymer of gelatin for lining historical oil paintings on canvases.

Design/methodology/approach

Cedar oil, cinnamon oil and their mixtures were emulsified in glycerol and incorporated into gelatin adhesive as green biocides and plasticizers. Physical, biological, chemical and mechanical tests were conducted on experimental mock-ups to assess the gelatin-based adhesive formulations for the reinforcement of canvas supports. Scanning electron microscope, colorimetric measurements, antimicrobial activity test, attenuated total reflection-Fourier transform infrared spectroscopy, tensile strength and elongation tests were carried out on the mock-ups before and after the artificial aging.

Findings

The formulations of gelatin-based adhesive with cinnamon and cinnamon-cedar mixture emulsified in glycerol proved their efficiency on the antimicrobial activity test, chemically delaying the decomposition of gelatin and accordingly providing compatible mechanical properties. Gelatin-based adhesive with emulsified cinnamon oil showed a slight yellowing that was quite improved with the mixture of the cinnamon-cedar-based adhesive formulation.

Originality/value

This study promotes a green approach to lining historical oil paintings by developing green formulations from bio-based origins that minimize the shrinkage and microbial infection of gelatin for lining paintings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 July 2024

Arthur de Carvalho Cruzeiro, Leonardo Santana, Danay Manzo Jaime, Sílvia Ramoa, Jorge Lino Alves and Guilherme Mariz de Oliveira Barra

This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating…

Abstract

Purpose

This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating polymers, to components with functional properties, including electrical conductivity and chemical sensitivity.

Design/methodology/approach

Extrusion-based 3D printed parts of polyethylene terephthalate modified with glycol (PETG) and polypropylene (PP) were coated in an aqueous acid solution via in situ oxidative polymerization of Ani. First, the feedstocks were characterized. Densely printed samples were then used to assess the adhesion of polyaniline (PAni) and electrical conductivity on printed parts. The best feedstock candidate for PAni coating was selected for further analysis. Last, a Taguchi methodology was used to evaluate the influence of printing parameters on the coating of porous samples. Analysis of variance and Tukey post hoc test were used to identify the best levels for each parameter.

Findings

Colorimetry measurements showed significant color shifts in PP samples and no shifts in PETG samples upon pullout testing. The incorporation of PAni content and electrical conductivity were, respectively, 41% and 571% higher for PETG in comparison to PP. Upon coating, the surface energy of both materials decreased. Additionally, the dynamic mechanical analysis test showed minimal influence of PAni over the dynamic mechanical properties of PETG. The parametric study indicated that only layer thickness and infill pattern had a significant influence on PAni incorporation and electrical conductivity of coated porous samples.

Originality/value

Current literature reports difficulties in incorporating PAni without affecting dimensional precision and feedstock stability. In situ, oxidative polymerization of Ani could overcome these limitations. However, its use as a functional post-processing of extrusion-based printed parts is a novelty.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 August 2024

Pradeep Kumar Mishra and Jagadesh T.

This study aims to evaluate the low energy impact characteristics of 3D printed carbon fiber thermoplastic and thermoset polymer composite using the Izod impact test. The effects…

Abstract

Purpose

This study aims to evaluate the low energy impact characteristics of 3D printed carbon fiber thermoplastic and thermoset polymer composite using the Izod impact test. The effects of infill density are examined on the Izod impact properties of 3D printed thermoset polymer and thermoplastic composite specimens. Furthermore, a thorough investigation is conducted into the effect of heat treatment using a hot-air oven on both types of 3D printed composite specimens. To characterize the impact characteristics of each specimen, the fracture surfaces caused by impact load are inspected, and the fracture mechanism is studied using scanning electron micrographs.

Design/methodology/approach

Izod Impact specimens of thermoset (epoxy resin) and thermoplastic carbon fiber of different infill density (70, 75, 80, 85, 90 and 100%) are fabricated using the different fiber impregnation 3D printing process. To carry out the heat treatment process, printing of composites is done for each infill design from both thermoset and thermoplastic composites and the impact characteristics of specimens are evaluated on a pendulum test-rig using the ASTM D-256 standard. Using a scanning electron microscope, each fracture zone underwent four separate scanning processes, ranging in size from 2 µm to 100 µm.

Findings

The impact resistance of the 3D printed thermoset and thermoplastic composite material is significantly influenced by the type of fiber placement and infill density in the matrix substrate. Because of the weak interfacial strength between the layers of fiber and polyamide 6, the specimen printed with continuous fiber implanted at the part exhibited reduced impact resistance. At 75% infill density, the impact specimen printed with coextruded fiber showed the highest impact resistance with a 367.02% greater magnitude than the continuous fiber specimen with the same infill density.

Originality/value

This work presents a novel approach to analyze the low energy impact characteristics and three-dimensional printing of carbon fiber reinforced thermoplastic and carbon fiber reinforced thermoset and thermoplastic composite material.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 June 2023

Ghania Mirouzi and Amina Houda

The objective of this research is to evaluate the influence of mineral additions on the mechanical performances of polymer concrete. This study aims to propose a novel approach…

Abstract

Purpose

The objective of this research is to evaluate the influence of mineral additions on the mechanical performances of polymer concrete. This study aims to propose a novel approach formulation of polymer concrete based on reduction in the quantity of the binder and disposal of large quantities of industrial by-products and household waste such as the marble, the brick and silica fume whose valuation in polymer concrete could be an interesting ecological and economical alternative. The incorporation of a rate of 10% brick powder affects the distribution of pores inside polymer concrete, that is, the pore diameters become thinner and decrease and the porosity becomes evenly distributed. The recycled mineral brick powder addition in polymer concrete mix improved the mechanical properties.

Design/methodology/approach

This polymer concrete was prepared by using polyester resin and two different types of sand, following a new formulation based on an empirical method. Furthermore, the optimal binder percentage was of 20% resin and a mixture of 52% dune sand and 48% quarry sand according to the Abrams method. To achieve our objective, five rates (from 2% to 10%) of brick powder, marble powder and silica fume were examined. Afterwards, its mechanical characteristics were evaluated via a three-point flexural with compressive resistance. The findings indicated that the addition of brick, marble and silica fume to polymer concrete increases the flexural strength with 21.84%, 12.76% and 9.07%, respectively.

Findings

Concerning the compressive strength, the best resistance is that of polymer concretes based on brick powder, and this economic formulation of polymer concrete serves the optimal cost/resistance ratio criteria. It allows an improvement in the mechanical resistance of concrete are obtained by adding brick powder that exceed that of the reference concrete.

Originality/value

In the past few decades, there has been several contribution concerning the subject of the reduction of the binder quantity in polymer concretes and adding the industrial and household wastes. However, previous studies revolving around the same area disregarded the effect of the brick powder, which appears scientifically of great importance for enriching the literature.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 September 2024

Sirisha Deepthi Sornapudi, Meenu Srivastava, Srinivas Manchikatla, Samuel Thavaraj H. and Senthil Kumar B.

Natural extracts produced with Annona squamosa and Moringa oleifera leaves through the methanol-based solvent were coated on 100% cotton and 80%:20% polyester/cotton blends to…

Abstract

Purpose

Natural extracts produced with Annona squamosa and Moringa oleifera leaves through the methanol-based solvent were coated on 100% cotton and 80%:20% polyester/cotton blends to improve the functional properties such as antimicrobial activity, wicking, stiffness and crease recovery of the fabric using an eco-friendly 1,2,3,4-butane tetracarboxylic acid (BTCA) crosslinking agent.

Design/methodology/approach

In this study, 100% cotton and 80:20% Polyester/Cotton fabrics with surface densities of 113.5 g/m2 and 101 g/m2 were treated BTCA. Eight different samples were produced by padding through the natural extracts. The FTIR investigation was performed on all the fabric samples. These coated fabrics were studied for their antimicrobial activity, wicking, stiffness and crease recovery properties.

Findings

It was found that the BTCA cross-linked fabrics showed higher antimicrobial activity against gram-positive and gram-negative bacteria. Similarly, the percentage crease recovery angle was higher for the Annona squamosa coated sample than for Moringa Oleifera leaf extract in both cotton and polyester cotton blend samples. Furthermore, no significant variation in stiffness values was discovered between the control samples of cotton and polyester cotton blend and its treatment one. It was interesting to note that treating the fabrics with cross-linker showed improved vertical wicking properties, which were closer to control fabric values. The study confirms that crosslinking the fabrics with BTCA has improved the functional properties of the fabrics. The zone of inhibition values of BTCA cross-linked moringa methanolic leaves extract coated cotton and polyester cotton blend were 6 to 6.5 cm, which was more than 50% higher than non-BTCA cross-linked fabric, and BTCA cross-linker has improved the vertical wicking properties.

Research limitations/implications

The outcome of this study will help to gain a better understanding of BTCA cross-linkers for improving the functional coating on textile substrates.

Originality/value

This study was conducted to improve the natural extract coating on textile material with eco-friendly aspects, enhancing the commercial utility of these finished fabrics

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 55