Search results

1 – 10 of 135
Article
Publication date: 17 July 2023

Zulfiqar Ali Raza, Aisha Rehman, Faiza Anwar and Naseer Ahmad

This study aims to investigate the effect of the copresence of ferrous (Fe2+) ions and sodium dodecyl sulfate (SDS) on the activity of an amylase enzyme during the desizing of…

35

Abstract

Purpose

This study aims to investigate the effect of the copresence of ferrous (Fe2+) ions and sodium dodecyl sulfate (SDS) on the activity of an amylase enzyme during the desizing of greige viscose fabric for potential industrial applications. The removal of starches is an essential step before processing the fabric for dyeing and finishing operations. The authors tend to accomplish it in eco-friendly and sustainable ways.

Design/methodology/approach

The experiments were designed under the Taguchi approach, and the results were analyzed using grey relational analysis to optimize the process. The textile properties of absorbency, reducing sugars, bending length, weight loss, Tegawa rating and tensile strength were assessed using the standard protocols. The control and optimized viscose specimens were investigated for certain surface chemical properties using advanced analytical techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA).

Findings

The results demonstrate that the Fe2+ concentration and process time were the main influencing factors in the amylolytic desizing of viscose fabric. The optimized process conditions were found to be 0.1 mm Fe2+ ions, 3 mm SDS, 80°C, 7 pH and 30 min process time. The copresence of Fe2+ ions and SDS promoted the biodesizing of viscose fabric. The SEM, Fourier transform infrared spectroscopy, XRD and TGA results demonstrated that the sizing agent has efficiently been removed from the fabric surface.

Practical implications

The amylase desizing of viscose fabric in the presence of certain metal ions and surfactants is a significant subject as the enzyme may face them due to their prevalence in the water systems. This could also support the biodesizing and bioscouring operations to be done in one bath, thus making the textile pretreatment process both economical and environmentally sustainable.

Originality/value

The authors found no report on the biodesizing of viscose fabric in the copresence of Fe2+ ions and the SDS surfactant under statistical multiresponse optimization. The biodesized viscose fabric has been investigated using both conventional and analytical approaches.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 January 2024

Hung Ngoc Phan and Satoko Okubayashi

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC…

Abstract

Purpose

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC modification method using glycerol and succinic acid with catalyst and heat, applied via an industrially scalable padding method to tackle BC’s stiffness drawbacks and enhance BC properties.

Design/methodology/approach

Fabric-like BC is generated via mechanical dehydration and then finished by using padding method with glycerol, succinic acid, catalyst and heat. Comprehensive material characterizations, including international testing standards for stiffness, bending properties (cantilever method), tensile properties, moisture vapor transmission rate, moisture content and regain, washing, thermal gravimetric analysis, derivative thermogravimetry, Fourier-transform infrared spectroscopy and colorimetric measurement, are used.

Findings

The combination of BC/glycerol/succinic acid dramatically enhanced porous structure, elongation (27.40 ± 6.39%), flexibility (flexural rigidity of 21.46 ± 4.01 µN m; bending modulus of 97.45 ± 18.20 MPa) and moisture management (moisture vapor transmission rate of 961.07 ± 86.16 g/m2/24 h; moisture content of 27.43 ± 2.50%; and moisture regain of 37.94 ± 4.73%). This softening process modified the thermal stability of BC. Besides, this study alleviated the drawbacks for washing (five cycles) of BC and glycerol caused by the ineffective affinity between glycerol and cellulose by adding succinic acid with catalyst and heat.

Originality/value

The study yields an effective padding process for BC softening and a unique modified BC to contribute added value to textile and leather industries as a sustainable alternative to existing materials and a premise for future research on BC functionalization by using doable technologies in mass production as padding.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 May 2023

Fatimah De’nan, Nor Salwani Hashim and Mohd Yusri Mohamad Razak

Tapered steel sections are widely used in house building design due to their structural efficiency and aesthetic appearance. Due to the practical usage of web tapering…

Abstract

Purpose

Tapered steel sections are widely used in house building design due to their structural efficiency and aesthetic appearance. Due to the practical usage of web tapering specifications in the metal building industry, fabrication and material expenses are analyzed to achieve geometric and economic productivity. The purpose of this study is to investigate the effectiveness of utilizing web profiles with openings in reducing the weight of steel beams.

Design/methodology/approach

In this paper, the nonlinear analysis of the bending behavior of a tapered steel section with an opening was studied by finite element analysis. The results were then compared with those of the tapered steel section without an opening in terms of displacement and yield moment.

Findings

The bending capacity of a tapered steel section was analyzed using finite element analysis. Results showed that the tapered steel section without openings had a higher bending capacity compared to the section with various sizes of web openings. The results also showed that decreasing the number of openings would increase the bending capacity, whereas increasing the size of the opening would decrease it. The difference in the yield moment between the tapered steel section with and without openings was only 15.818%. A total of 60 nonlinear analyses were conducted to investigate the effect of the number and size of web openings, flange thickness and web thickness on the bending behavior. However, this study showed that web opening with octagon shape and 0.6D size of web opening, where D is the depth of section, showed the best section in terms of yield moment and volume reduction compared to other opening size and shape.

Originality/value

It is also found that tapered steel section has better moment resistance in thicker flange and web. The study is valuable for engineers and designers who work with steel structures and need to optimize the performance of tapered steel sections with web openings.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 May 2023

Soliyana Gebeyaw, Kura Alemayehu Beyene, Eradu Seid, Zemzem Mustofa and Gideon K. Rotich

This study aims to manufacture alternative window shutters using waste cotton fabrics by stiffening using polyvinyl acetate (PVA) with vinyl acrylic binder solutions.

Abstract

Purpose

This study aims to manufacture alternative window shutters using waste cotton fabrics by stiffening using polyvinyl acetate (PVA) with vinyl acrylic binder solutions.

Design/methodology/approach

The manufactured fabrics were evaluated for their tensile strength, drapeability, bending length by weight and color fastness to light. And finally, an analysis of variance was done for each parameter.

Findings

As the percent of PVA with a vinyl acrylic solution and the number of layers increased, the tensile strength, drape coefficient (percent), bending length (cm), and color fastness to light increased in both directions. The percent of PVA with a vinyl acrylic solution and the number of layers are statistically significant for each response such as tensile strength, drape coefficient (percent), bending length (cm), color fastness to light and water repellency at a 95% confidence interval. Tensile strength, drape coefficient (%) and bending length (cm) are always greater in the warp direction than in the weft direction. The tensile strength, drape coefficient (percent), bending length (cm) and color fastness to light of treated fabrics samples are greater than those of the untreated fabrics.

Originality/value

The factory waste fabrics can be recycled into window shutters which will provide the cheaper raw material for window shutter manufacturers.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 September 2022

Senthil Kumar B., Anita Rachel D. and Sentil Kumar C.B.

Eri silk fiber has superior thermal insulation behavior, better softness than cotton fiber. However, Eri silk’s use in the commercial arena has not yet taken off. The purpose of…

Abstract

Purpose

Eri silk fiber has superior thermal insulation behavior, better softness than cotton fiber. However, Eri silk’s use in the commercial arena has not yet taken off. The purpose of the study is to explore the comfort properties of the fabric, which enhances the commercial acceptance of Eri silk clothing.

Design/methodology/approach

In this investigation, three different single knit Eri silk structures were produced with different loop lengths and yarn counts to analyze the influence of process variables on low-stress mechanical properties. To execute the research work, Eri silk spun yarn of three different linear densities (15 tex, 20 tex, 25 tex) were chosen. Three different knitted structures were produced, such as single jersey, popcorn and cellular blister, and two different loop lengths were also selected.

Findings

The cellular blister structure has shown appreciable low-stress properties next highest position was attained by the popcorn structure. Yarn fineness and loop length were significant with most of the low-stress properties.

Research limitations/implications

The findings of this research will contribute to a greater awareness of Eri silk knitted fabric and its process parameters in relation to its commercial utility.

Originality/value

This study was conducted to explore the influence of knit structure, loop length and yarn count on the low-stress properties of Eri silk-based thermal clothing.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 December 2023

Bheem Pratap and Pramod Kumar

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Abstract

Purpose

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Design/methodology/approach

The investigation involved studying the influence of partially replacing fly ash with ground granulated blast furnace slag (GGBS) at different proportions (5%, 10%, 15%, 20% and 25%) on the composition of the geopolymer. This approach aimed to examine how the addition of GGBS impacts the properties of the geopolymer material. The chemical NaOH was purchased from the local supplier of Jamshedpur. The alkali solution was prepared with a concentration of 12 M NaOH to produce the concrete. After several trials, the alkaline-to-binder ratio was determined to be 0.43.

Findings

The compressive strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 35.42 MPa, 41.26 MPa, 44.79 MPa, 50.51 MPa and 46.33 MPa, respectively. The flexural strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 5.31 MPa, 5.64 MPa, 6.12 MPa, 7.15 MPa and 6.48 MPa, respectively. The split tensile strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 2.82 MPa, 2.95 MPa, 3.14 MPa, 3.52 MPa and 3.31 MPa, respectively.

Originality/value

This approach allows for the examination of how the addition of GGBS affects the properties of the geopolymer material. Four different temperature levels were chosen for analysis: 100 °C, 300 °C, 500 °C and 700 °C. By subjecting the geopolymer samples to these elevated temperatures, the study aimed to observe any changes in their mechanical.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 May 2024

Jiahao Jiang, Jinliang Liu, Shuolei Cao, Sheng Cao, Rui Dong and Yusen Wu

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major…

Abstract

Purpose

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major factor affecting the shear capacity. This research aims to provide guidance for studying the shear capacity of GPC and to observe how the failure modes of beams change with the variation of the shear-span ratio, thereby discovering underlying patterns.

Design/methodology/approach

Three test beams with shear span ratios of 1.5, 2.0 and 2.5 are investigated in this paper. For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities are 337kN, 235kN and 195kN, respectively. Transitioning from 1.5 to 2.0 results in a 30% decrease in capacity, a reduction of 102kN. Moving from 2.0 to 2.5 sees a 17% decrease, with a loss of 40KN in capacity. A shear capacity formula, derived from modified compression field theory and considering concrete shear strength, stirrups and aggregate interlocking force, was validated through finite element modeling. Additionally, models with shear ratios of 1 and 3 were created to observe crack propagation patterns.

Findings

For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities of 337KN, 235KN and 195KN are achieved, respectively. A reduction in capacity of 102KN occurs when transitioning from 1.5 to 2.0 and a decrease of 40KN is observed when moving from 2.0 to 2.5. The average test-to-theory ratio, at 1.015 with a variance of 0.001, demonstrates strong agreement. ABAQUS models beams with ratios ranging from 1.0 to 3.0, revealing crack trends indicative of reduced crack angles with higher ratios. The failure mode observed in the models aligns with experimental results.

Originality/value

This article provides a reference for the shear bearing capacity formula of geopolymer reinforced concrete (GRC) beams, addressing the limited research in this area. Additionally, an exponential model incorporating the shear-span ratio as a variable was employed to calculate the shear capacity, based on previous studies. Moreover, the analysis of shear capacity results integrated literature from prior research. By fitting previous experimental data to the proposed formula, the accuracy of this study's derived formula was further validated, with theoretical values aligning well with experimental results. Additionally, guidance is offered for utilizing ABAQUS in simulating the failure process of GRC beams.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 29 March 2024

Aminuddin Suhaimi, Izni Syahrizal Ibrahim and Mariyana Aida Ab Kadir

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to…

Abstract

Purpose

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to understand pre-loading's role in replicating RC beams' actual responses to fire, aiming to improve fire testing protocols and structural fire engineering design.

Design/methodology/approach

This review systematically aggregates data from existing literature on the fire response of RC beams, comparing scenarios with (WP) and without pre-loading (WOP). Through statistical tools like the two-tailed t-test and Mann–Whitney U-test, it assesses deflection extremes. The study further examines structural responses, including flexural and shear behavior, ultimate load capacity, post-yield behavior, stiffness degradation and failure modes. The approach concludes with a statistical forecast of ideal pre-load levels to elevate experimental precision and enhance fire safety standards.

Findings

The review concludes that pre-loading profoundly affects the fire response of RC beams, suggesting a 35%–65% structural capacity range for realistic simulations. The review also recommended the initial crack load as an alternative metric for determining the pre-loading impact. Crucially, it highlights that pre-loading not only influences the fire response but also significantly alters the overall structural behavior of the RC beams.

Originality/value

The review advances structural fire engineering with an in-depth analysis of pre-loading's impact on RC beams during fire exposure, establishing a validated pre-load range through thorough statistical analysis and examination of previous research. It refines experimental methodologies and structural design accuracy, ultimately bolstering fire safety protocols.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 25 April 2024

Saadet Güler, Ahmet Yavaş, Berk Özler and Ahmet Çagri Kilinç

Three-dimensional (3D) printing is popular for many applications including the production of photocatalysts. This paper aims to focus on developing of 3D-printed…

Abstract

Purpose

Three-dimensional (3D) printing is popular for many applications including the production of photocatalysts. This paper aims to focus on developing of 3D-printed photocatalyst-nano composite lattice structure. Digital light processing (DLP) 3D printing of photocatalyst composites was performed using photosensitive resin mixed with 0.5% Wt. of TiO2 powder and varying amounts (0.025% Wt. to 0.2% Wt.) of graphene nanoplatelet powder. The photocatalytic efficiency of DLP 3D-printed photocatalyst TiO2 composite was investigated, and the effects of nano graphite powder incorporation on the photocatalytic activity, thermal and mechanical properties were investigated.

Design/methodology/approach

Methods involve 3D computer-aided design modeling, printing parameters and comprehensive characterization techniques such as structural equation modeling, X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared (FTIR) and mechanical testing.

Findings

Results highlight successful dispersion and characteristics of TiO2 and graphene nanoplatelet (GNP) powders, intricate designs of 3D-printed lattice structures, and the influence of GNPs on thermal behavior and mechanical properties.

Originality/value

The study suggests applicability in wastewater treatment and environmental remediation, showcasing the adaptability of 3 D printing in designing effective photocatalysts. Future research should focus on practical applications and the long-term durability of these 3D-printed composites.

Graphical abstract

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 April 2024

Luigi Morfini, Fankai Meng, Margherita Beretta, Jozef Vleugels, Roberto Spina and Eleonora Ferraris

This study aims to investigate the performance of filament-based material extrusion additive manufacturing (MEX), combined with debinding and sintering, as a novel approach to…

Abstract

Purpose

This study aims to investigate the performance of filament-based material extrusion additive manufacturing (MEX), combined with debinding and sintering, as a novel approach to manufacturing ceramic components.

Design/methodology/approach

A commercial ZrO2 filament was selected and analysed by infra-red (IR) spectroscopy, rheology and thermo-gravimetry. The influence of the print parameters (layer thickness, flow rate multiplier, printing speed) and sintering cycle were investigated to define a suitable printing and sintering strategy. Biaxial flexure tests were applied on sintered discs realised with optimised printing strategies, and the results were analysed via Weibull statistics to evaluate the mechanical properties of printed components. The hardness and thermal conductivity of sintered components were also tested.

Findings

Layer thickness and flow rate multiplier of the printing process were proved to have significant effect on the density of as-printed parts. Optimised samples display a sintered density >99% of the theoretical density, 20% linear sintering shrinkage, a characteristic flexural strength of 871 MPa with a Weibull modulus of 4.9, a Vickers hardness of 12.90 ± 0.3 GPa and a thermal conductivity of 3.62 W/mK. Gyroids were printed for demonstration purposes.

Originality/value

To the best of the authors’ knowledge, this work is the first to apply biaxial flexure tests and Weibull statistics to additively manufactured MEX zirconia components, hence providing comparable results to other additive technologies. Moreover, fractography analysis builds the connection between printing defects and the fracture mechanism of bending. This study also provides guidelines for fabricating high-density zirconia components with MEX.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

All dates (135)

Content type

Earlycite article (135)
1 – 10 of 135