Search results

1 – 10 of 347
Article
Publication date: 17 July 2023

Zulfiqar Ali Raza, Aisha Rehman, Faiza Anwar and Naseer Ahmad

This study aims to investigate the effect of the copresence of ferrous (Fe2+) ions and sodium dodecyl sulfate (SDS) on the activity of an amylase enzyme during the desizing of…

35

Abstract

Purpose

This study aims to investigate the effect of the copresence of ferrous (Fe2+) ions and sodium dodecyl sulfate (SDS) on the activity of an amylase enzyme during the desizing of greige viscose fabric for potential industrial applications. The removal of starches is an essential step before processing the fabric for dyeing and finishing operations. The authors tend to accomplish it in eco-friendly and sustainable ways.

Design/methodology/approach

The experiments were designed under the Taguchi approach, and the results were analyzed using grey relational analysis to optimize the process. The textile properties of absorbency, reducing sugars, bending length, weight loss, Tegawa rating and tensile strength were assessed using the standard protocols. The control and optimized viscose specimens were investigated for certain surface chemical properties using advanced analytical techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA).

Findings

The results demonstrate that the Fe2+ concentration and process time were the main influencing factors in the amylolytic desizing of viscose fabric. The optimized process conditions were found to be 0.1 mm Fe2+ ions, 3 mm SDS, 80°C, 7 pH and 30 min process time. The copresence of Fe2+ ions and SDS promoted the biodesizing of viscose fabric. The SEM, Fourier transform infrared spectroscopy, XRD and TGA results demonstrated that the sizing agent has efficiently been removed from the fabric surface.

Practical implications

The amylase desizing of viscose fabric in the presence of certain metal ions and surfactants is a significant subject as the enzyme may face them due to their prevalence in the water systems. This could also support the biodesizing and bioscouring operations to be done in one bath, thus making the textile pretreatment process both economical and environmentally sustainable.

Originality/value

The authors found no report on the biodesizing of viscose fabric in the copresence of Fe2+ ions and the SDS surfactant under statistical multiresponse optimization. The biodesized viscose fabric has been investigated using both conventional and analytical approaches.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 July 2023

Khaled Mostafa, Nader Abdelaziz and Azza El-Sanabary

The purpose of this study is to undertake surface graft copolymerization of viscose fabric via altering its fibrous properties by using acrylic acid (AA) as a carboxyl-containing…

Abstract

Purpose

The purpose of this study is to undertake surface graft copolymerization of viscose fabric via altering its fibrous properties by using acrylic acid (AA) as a carboxyl-containing monomer and peroxydisulfate (PDS) in presence of ferrous sulfate as a novel redox pair for initiating grafting. The latter process acted as an energy-saving process with respect to the reduction in polymerization temperature and maximizing the graft yield %, in addition to rendering the grafted viscose fabrics dye-able with cationic dye (crystal violet), which has frequently no direct affinity to fix on fabric.

Design/methodology/approach

To make graft copolymerization more efficient and economic, the optimum conditions for graft copolymerization were established. The graft yield % was determined as a function of initiator, catalyst and monomer concentrations and the material to liquor ratio, in addition to polymerization time and temperatures. Metrological characterizations via Fourier transform infrared spectroscopy and scanning electron microscopy of topographic morphological surface change have also been established in comparison with the ungrafted samples.

Findings

The maximum graft yield of 70.6% is obtained at the following optimum conditions: monomer (150 % based on the weight of fabric), PDS (50 m mole), ferrous sulfate (80 m mole) and sulfuric acid (30 m mole) at 40° C for 1.5 h using a liquor ratio of 30. Remarkably, grafting with AA enabled a multifold upsurge in color strength, with improvements in the fastness properties of cationically dyed grafted viscose fabric measured on the blue scale in comparison with untreated viscose fabric.

Originality/value

The novelty addressed here is undertaken with studying the effect of altering the extent of grafting of poly (AA)-viscose graft copolymers expressed as graft yield % in addition to carboxyl contents on cationic dyeing of viscose fabric for the first time in the literature. Moreover, rendering the viscose fabrics after grafting is dye-able with cationic dye with high brilliance of shades, which has regularly no direct affinity to fix on this type of fabrics.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 October 2019

Khaled Mostafa and Azza El-Sanabary

This study aims to explore the incorporation of the authors previously prepared chitosan nanoparticles (CNPs) of size around 60-100 nm in the cross-linking formulation of viscose

Abstract

Purpose

This study aims to explore the incorporation of the authors previously prepared chitosan nanoparticles (CNPs) of size around 60-100 nm in the cross-linking formulation of viscose fabrics to see CNPs impact in terms of imparting multi-functional characteristics such as tensile strength, dry wrinkle recovery angles and antibacterial properties.

Design/methodology/approach

CNPs of size around 60-100 nm were incorporated in cross-linking formulations for viscose fabrics, including different concentrations of glutaraldehyde as a non-formaldehyde cross-linking agent and magnesium chloride hexahydrate as a catalyst. The formulations were applied at different curing times and temperatures in 100 mL distilled water, giving rise to a wet pickup of ca. 85 per cent. The fabrics were dried for 3 min at 85°C and cured at specified temperatures for fixed time intervals in thermo fixing oven according to the traditional pad-dry-cure method.

Findings

The above eco-friendly method for finished viscose fabrics was found to obtain high dry wrinkle recovery angle and maintain the tensile strength of the finished fabric within the acceptable range, as well as antibacterial properties against Escherichia coli and Staphylococcus aureus as a gram-negative and gram-positive bacteria, respectively. Both, scanning electron microscope and nitrogen percent on the finished fabric confirm the penetration of CNPs inside the fabric structure. Finally, viscose fabrics pageant antibacterial activity against gram-positive and gram-negative bacteria assessed even after 20 washing cycle.

Research limitations/implications

CNPs with its flourishing effect with respect to cationic nature, biodegradability, reactivity, higher surface area and antimicrobial activity; in addition to glutaraldehyde as non-formaldehyde finishing agent can be used as multi-functional agents for viscose fabrics instead of DMDHEU, polyacrylate and monomeric composites as hazardous materials.

Practical implications

CNPs as cationic biopolymers were expected to impart multi-functional properties to viscose fabrics especially with obtaining reasonable dry wrinkle recovery angle and tensile strength in addition to antibacterial properties.

Originality/value

The novelty addressed here is undertaken with a view to impart easy care characteristics and antibacterial activities onto viscose fabrics using CNPs as antimicrobial agent and glutaraldehyde as non-formaldehyde durable press finishes to-replace the traditional formaldehyde-based resins. Besides, to the authors’ knowledge, there is no published work so far using the above cross-linking formulation written above.

Details

Pigment & Resin Technology, vol. 49 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 December 2020

Kh M. Mostafa and A.A. El-Sanabary

This study aims to use multi-functional viscose fabric that was facilely developed with with respect to ease and care characteristics, reinforcement effect and antibacterial…

Abstract

Purpose

This study aims to use multi-functional viscose fabric that was facilely developed with with respect to ease and care characteristics, reinforcement effect and antibacterial activity by using novel echo friendly antibacterial finish based on citric acid/sodium hypophosphite and the authors’ previously tailor-made poly meth acrylic acid (MAA)-chitosan graft copolymer via alternative microwave curing approach instead of traditional high-temperature cure one.

Design/methodology/approach

Viscose fabric was paddled twice in the cross-linking formulations containing different concentrations of citric acid, poly (MAA)-chitosan graft copolymer and sodium hypophosphite to 90 % wet pick up and dried at 100°C for 3 min in an electric oven. Then, the treated fabrics were placed on the disk spinner of the microwave oven and cured at different power (100–800 Watt) for various durations (60–180 s). The fabric was then water-rinsed and dried at ambient condition before use.

Findings

Results revealed that the above echo friendly method for finished viscose fabrics was found to achieve relatively high dry wrinkle recovery angle and maintain the loss in tensile strength within the acceptable range, as well as antibacterial activity against Escherichia coli and Staphylococcus aureus as a gram-negative and gram-positive bacteria, respectively; in addition to durability up to ten washing cycles. Furthermore, scanning electron microscope images, nitrogen content and add on % of the finished fabric confirmed the penetration of grafted chitosan inside the fabric structure. The tentative mechanism for these reactions is advocated.

Originality/value

The novelty addressed here is undertaken with the advantages of using citric acid as a nonformaldehyde, safe and cheap poly carboxylic acid as a crosslinking agent and sodium hypophosphite as a potential catalyst, in addition to the authors’ noncitable multifunctional echo friendly tailor-made poly (MAA)-chitosan graft copolymer for imparting reinforcement and antibacterial characteristics to viscose fabric that uses the pad-dry/cure microwave fixation for progressively persuaded heat within the fabric during curing.

Research limitations/implications

This was done to see the impact of microwave as green and efficient tool with respect to reduction in organic solvents, chemicals and exposer time as well as fixation temperature on the finishing reaction in comparison with traditional pad-dry-cure method.

Practical implications

Poly (MAA)-chitosan graft copolymer as amphoteric biopolymer was expected to impart multifunctional properties to viscose fabrics especially with comparable dry wrinkle recovery angle and minimize the loss in tensile strength in addition to antibacterial properties in comparison with untreated one.

Details

Pigment & Resin Technology, vol. 50 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 2013

N.M. Bhattad, A.I. Wasif and S.K. Laga

Polyester 3GT polymer provides a unique combination of benefits to a wide variety of applications. This advanced, value added polymer offers a major new mix-enrichment, with the…

Abstract

Polyester 3GT polymer provides a unique combination of benefits to a wide variety of applications. This advanced, value added polymer offers a major new mix-enrichment, with the potential to grow into a significant market over the next ten to twenty years. In the present study, an attempt has been made to explore the possibility of producing fabric made from PET 3GT/viscose which can be a potential substitute for PET/viscose. It is observed that PET 3GT/viscose can be heat set at a low temperature. Most of mechanical properties of PET 3GT/viscose fabric are comparable with those of PET/viscose blended fabrics. PET 3GT/viscose blended fabric has a better hand value than PET/viscose blended fabrics.

Details

Research Journal of Textile and Apparel, vol. 17 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 23 November 2020

Farhana Naeem, Fareha Asim and Muhammad Tufail

Low pilling and wrinkle-free appearance of cellulosic fabrics are always demanded. Resin finishes are applied to improve these properties, but there is an adverse effect of the…

Abstract

Purpose

Low pilling and wrinkle-free appearance of cellulosic fabrics are always demanded. Resin finishes are applied to improve these properties, but there is an adverse effect of the resin finish as it tends to reduce the strength of the fabrics. Therefore, the effect of the two most important finishes; anti-pilling and resin finish, on the strength characteristics of 100% viscose and 50:50 Viscose/cotton plain and satin fabrics were investigated in this paper. The purpose of this study is to identify significant factors affecting the strength of fabrics finished with crosslinking agents [non-ionic acrylate copolymer and (dimethyloldihydroxyethyleneurea)].

Design/methodology/approach

A statistical model of 23 32 mixed level factorial design was used for the study. Appratan N9211 (A) and Arkofix NF (B) were tested at three concentrations, whereas three factors fabric; weave (C), blend ratio (D) and curing method (E) were tested at two levels. The performance of the finish was evaluated by two response variables, which were tensile and tear strength.

Findings

The various conditions of high strength values of the fabrics were presented in this paper. It was found that the tear strength of the fabrics increased after finishing except for 50:50 viscose/cotton plain fabric, whereas the tensile strength of plain fabrics is better at shock cure and for a satin normal cure is better. The model adequacy plots exhibit that the assumptions of normality and independence are not desecrated. Moreover, the values of “predicted R2” are in reasonable agreement with the “adjusted R2,” which confirms that models have been accounted for most of the inconsistency.

Originality/value

This paper is a part of my PhD dissertation. Unlike the previous studies, this paper investigated the effect of two crosslinking agents, Appretan N9211 as anti-pilling and Arkofix NF as wrinkle resistant agents on 100% viscose and 50:50 viscose/cotton plain and satin. Three different concentrations of both the crosslinking agents were used. Also, fixation of the finishes was carried out at a normal cure and shock cure.

Article
Publication date: 17 May 2022

Valentin Mateev and Iliana Marinova

In this paper, a computational model of a coaxial magnetic gear (MG) design with viscose ferrofluid between rotors is proposed. Viscose ferrofluid is used to decrease the magnetic…

Abstract

Purpose

In this paper, a computational model of a coaxial magnetic gear (MG) design with viscose ferrofluid between rotors is proposed. Viscose ferrofluid is used to decrease the magnetic reluctance and therefore creates higher magnetic torque. However, viscose friction of ferrofluid is undesirable and must be minimised in this particular application. MG is supposed to operate under low rotational speeds, where the dynamic viscose friction is very low, and the effects of the viscose ferrofluid over the MG’s efficiency must be estimated. The paper aims to analyze the performance of MG with viscose ferrofluid and to estimate the MG efficiency by computational model using finite element method (FEM).

Design/methodology/approach

An MG design with viscose ferrofluid between the outer low-speed rotor and modulating steel segments was modelled as a coupled transient magnetic field problem and a kinematic model with viscous friction coefficients derived from a previously computed fluid dynamics model.

Findings

The proposed computational implementation is suitable for homogeneous magnetic fluid modelling in electromagnetic actuators and rotational machines. The results regarding power and torque transmission of MG were obtained by coupled finite element modelling. The efficiency of MG significantly decreased due to ferrofluid friction.

Originality/value

The described MG design with viscose ferrofluid is a novel device with new operational characteristics, and new results for the effects of viscose ferrofluid friction in the outer magnetic field over the MG efficiency are estimated.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 December 2021

Khaled Mostafa

This paper aims at studying the oxygen plasma treatment and the previously prepared and fully characterized chitosan nanoparticles (CNPs) as a green and eco-friendly strategy for…

Abstract

Purpose

This paper aims at studying the oxygen plasma treatment and the previously prepared and fully characterized chitosan nanoparticles (CNPs) as a green and eco-friendly strategy for surface modification of viscose fabric. This was done to render viscose fabric dye able with two types of acid dyes that do not have direct affinity to fix on it via improving the fabric wettability.

Design/methodology/approach

To achieve the goal, viscose fabric was activated with oxygen plasma at optimum conditions and coated with different concentrations of CNPs solution via conventional pad dry cure technique. The untreated and plasma-treated fabrics with CNPs were dyed with two types of acid dyes, namely, Acid Orange 7 and Methyl Red under determined conditions. The color strength (K/S), fastness properties to light, rubbing and perspiration, add on %, tensile strength, wettability and durability of the dyed samples were determined and compared.

Findings

The results divulged that oxygen plasma-treated fabric with CNPs and the aforementioned dyes in question could improve the flowing properties in comparison with untreated fabric: (a) the fabric wettability expressed as wetting area mm2; (b) the dye ability and fastness properties of viscose fabrics expressed as K/S and fastness properties; and (c) the strength properties and add on % of the treated fabric. On the other hand, the durability of the plasma-treated fabric decreased with increasing washing cycles.

Originality/value

The novelty addressed here was using plasma treatment as an eco-friendly pre-treatment approach for attachment of CNPs as a multifunctional green bio-nano polymer onto viscose fabric, which improved the dyeing properties of the fabric with acid dyes that do not have direct affinity to fix onto it.

Details

Pigment & Resin Technology, vol. 52 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 March 2018

Wasif Latif, Abdul Basit, Zulfiqar Ali and Sajjad Ahmad Baig

The purpose of this paper is to study the 100 percent pure cotton and 50:50 cotton and regenerated fibers (tencel, modal, bamboo, viscose) blends. The blends of regenerated fibers…

Abstract

Purpose

The purpose of this paper is to study the 100 percent pure cotton and 50:50 cotton and regenerated fibers (tencel, modal, bamboo, viscose) blends. The blends of regenerated fibers with cotton are studied so as to replace 100 percent cotton fabrics with the cotton blends as cotton cannot fulfill the demand of clothing due to the increasing population.

Design/methodology/approach

In order to conduct this study, cotton, as natural cellulose fiber, was used. Regenerated fibers include viscose, tencel, modal and bamboo. Five yarn samples of Ne 30/1 of 100 percent cotton and blends (50:50) of cotton with tencel, modal, bamboo and viscose fibers were produced. The blending was done in the Blow-room, and yarn samples were produced by employing the ring spinning technique. Plain woven fabrics samples with Ends (76) and Picks (68) per inch of 120 gsm were prepared. The fabric samples were tested for mechanical (warp and weft tensile and tear strengths) and comfort properties (air permeability, moisture management and thermal resistance).

Findings

Cotton:tencel fabric has the excellent mechanical (tensile and tear strength) as well as comfort properties (air permeability, moisture management and thermal resistance). It means that the most suitable blend that cotton can make with the regenerated fibers is the tencel. Therefore, to have more comfortable fabrics, the fabrics which are being made by 100 percent cotton can be replaced with the cotton:tencel.

Originality/value

To the authors’ information, no study has been reported in which all the regenerated fibers blended with cotton were studied. Hence, the aim of this work is to study the mechanical and comfort properties of the regenerated fibers (modal, tencel, viscose and bamboo) blended with cotton. The blends of cotton with regenerated fibers might replace 100 percent cotton in clothing applications as cotton cannot fulfill the increasing demanding of clothing.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 June 2011

Gaurav Agarwal, Ludovic Koehl and Anne Perwvelz

The purpose of this paper is to examine the influence of ageing and the use of fabric softener during the life cycle of knitted fabrics.

Abstract

Purpose

The purpose of this paper is to examine the influence of ageing and the use of fabric softener during the life cycle of knitted fabrics.

Design/methodology/approach

The low‐stress mechanical properties were evaluated by means of the Kawabata evaluation system for fabric (KES‐F) and universal surface tester (UST) revealing that the tensile, shear, bending, compression and surface properties were altered by both ageing during the wash cycles and the use of fabric softener.

Findings

Machine laundering leaves fabrics with an uncomfortable hand due to the removal of finishes and the harsh mechanical action of laundering, and results in the change in mechanical properties of the fabrics.

Originality/value

The paper identifies the critical mechanical parameters which are influenced by ageing and the use of fabric softeners during life cycle of garments.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 347