Search results

1 – 10 of 473
Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 April 2024

Irina Alexandra Georgescu, Simona Vasilica Oprea and Adela Bâra

The COVID-19 pandemic and the onset of the conflict in Ukraine led to a sustained downturn in tourist arrivals (TA) in Russia. This paper aims to explore the influence of…

Abstract

Purpose

The COVID-19 pandemic and the onset of the conflict in Ukraine led to a sustained downturn in tourist arrivals (TA) in Russia. This paper aims to explore the influence of geopolitical risk (GPR) and other indices on TA over 1995–2023.

Design/methodology/approach

We employ a nonlinear autoregressive distributed lag (NARDL) model to analyze the effects, capturing both the positive and negative shocks of these variables on TA.

Findings

Our research demonstrates that the NARDL model is more effective in elucidating the complex dynamics between macroeconomic factors and TA. Both an increase and a decrease in GPR lead to an increase in TA. A 1% negative shock in GPR leads to an increase in TA by 1.68%, whereas a 1% positive shock in GPR also leads to an increase in TA by 0.5%. In other words, despite the increase in GPR, the number of tourists coming to Russia increases by 0.5% for every 1% increase in that risk. Several explanations could account for this phenomenon: (1) risk-tolerant tourists: some tourists might be less sensitive to GPR or they might find the associated risks acceptable; (2) economic incentives: increased risk might lead to a depreciation in the local currency and lower costs, making travel to Russia more affordable for international tourists; (3) niche tourism: some tourists might be attracted to destinations experiencing turmoil, either for the thrill or to gain firsthand experience of the situation; (4) lagged effects: there might be a time lag between the increase in risk and the actual impact on tourist behavior, meaning the effects might be observed differently over a longer period.

Originality/value

Our study, employing the NARDL model and utilizing a dataset spanning from 1995 to 2023, investigates the impact of GPR, gross domestic product (GDP), real effective exchange rate (REER) and economic policy uncertainty (EPU) on TA in Russia. This research is unique because the dataset was compiled by the authors. The results show a complex relationship between GPR and TA, indicating that factors influencing TA can be multifaceted and not always intuitive.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2023

Muhammad Asim, Muhammad Yar Khan and Khuram Shafi

The study aims to investigate the presence of herding behavior in the stock market of UK with a special emphasis on news sentiment regarding the economy. The authors focus on the…

Abstract

Purpose

The study aims to investigate the presence of herding behavior in the stock market of UK with a special emphasis on news sentiment regarding the economy. The authors focus on the news sentiment because in the current digital era, investors take their decision making on the basis of current trends projected by news and media platforms.

Design/methodology/approach

For empirical modeling, the authors use machine learning models to investigate the presence of herding behavior in UK stock market for the period starting from 2006 to 2021. The authors use support vector regression, single layer neural network and multilayer neural network models to predict the herding behavior in the stock market of the UK. The authors estimate the herding coefficients using all the models and compare the findings with the linear regression model.

Findings

The results show a strong evidence of herding behavior in the stock market of the UK during different time regimes. Furthermore, when the authors incorporate the economic uncertainty news sentiment in the model, the results show a significant improvement. The results of support vector regression, single layer perceptron and multilayer perceptron model show the evidence of herding behavior in UK stock market during global financial crises of 2007–08 and COVID’19 period. In addition, the authors compare the findings with the linear regression which provides no evidence of herding behavior in all the regimes except COVID’19. The results also provide deep insights for both individual investors and policy makers to construct efficient portfolios and avoid market crashes, respectively.

Originality/value

In the existing literature of herding behavior, news sentiment regarding economic uncertainty has not been used before. However, in the present era this parameter is quite critical in context of market anomalies hence and needs to be investigated. In addition, the literature exhibits varying results about the existence of herding behavior when different methodologies are used. In this context, the use of machine learning models is quite rare in the herding literature. The machine learning models are quite robust and provide accurate results. Therefore, this research study uses three different models, i.e. single layer perceptron model, multilayer perceptron model and support vector regression model to investigate the herding behavior in the stock market of the UK. A comparative analysis is also presented among the results of all the models. The study sheds light on the importance of economic uncertainty news sentiment to predict the herding behavior.

Details

Review of Behavioral Finance, vol. 16 no. 3
Type: Research Article
ISSN: 1940-5979

Keywords

Article
Publication date: 26 December 2023

Aniket Halder, Arabdha Bhattacharya, Nirmalendu Biswas, Nirmal K. Manna and Dipak Kumar Mandal

The purpose of this study is to carry out a comprehensive analysis of magneto-hydrodynamics (MHD), nanofluidic flow dynamics and heat transfer as well as thermodynamic…

Abstract

Purpose

The purpose of this study is to carry out a comprehensive analysis of magneto-hydrodynamics (MHD), nanofluidic flow dynamics and heat transfer as well as thermodynamic irreversibility, within a novel butterfly-shaped cavity. Gaining a thorough understanding of these phenomena will help to facilitate the design and optimization of thermal systems with complex geometries under magnetic fields in diverse applications.

Design/methodology/approach

To achieve the objective, the finite element method is used to solve the governing equations of the problem. The effects of various controlling parameters such as butterfly-shaped triangle vertex angle (T), Rayleigh number (Ra), Hartmann number (Ha) and magnetic field inclination angle (γ ) on the hydrothermal performance are analyzed meticulously. By investigating the effects of these parameters, the authors contribute to the existing knowledge by shedding light on their influence on heat and fluid transport within butterfly-shaped cavities.

Findings

The major findings of this study reveal that the geometrical shape significantly alters fluid motion, heat transfer and irreversibility production. Maximum heat transfer, as well as entropy generation, occurs when the Rayleigh number reaches its maximum, the Hartmann number is minimized and the angle of the magnetic field is set to 30° or 150°, while the butterfly wings angle or vertex angle is kept at a maximum of 120°. The intensity of the magnetic field significantly controls the heat flow dynamics, with higher magnetic field strength causing a reduction in the flow strength as well as heat transfer. This configuration optimizes the heat transfer characteristics in the system.

Research limitations/implications

Further research can be expanded on this study by examining thermal performance under different curvature effects, orientations, boundary conditions and additional factors. This can be accomplished through numerical simulations or experimental investigations under various multiphysical scenarios.

Practical implications

The geometric configurations explored in this research have practical applications in various engineering fields, including heat exchangers, crystallization processes, microelectronic devices, energy storage systems, mixing processes, food processing, air-conditioning, filtration and more.

Originality/value

This study brings value by exploring a novel geometric configuration comprising the nanofluidic flow, and MHD effect, providing insights and potential innovations in the field of thermal fluid dynamics. The findings contribute a lot toward maximizing thermal performance in diverse fields of applications. The comparison of different hydrothermal behavior and thermodynamic entropy production under the varying geometric configuration adds novelty to this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 19 March 2024

Juliana Maria Trammel, Laura Robinson and Lloyd Levine

This chapter seeks to understand the intersection between eGovernment, social media, and digital inequalities by examining the disparate flow of information during the COVID-19…

Abstract

This chapter seeks to understand the intersection between eGovernment, social media, and digital inequalities by examining the disparate flow of information during the COVID-19 pandemic. Developed economies are increasingly transitioning to digital interfaces for information dissemination and provision of services. The authors explore the potential of, and challenges facing eGovernment by looking at the use of social media during the COVID-19 pandemic. This chapter employs a case study approach to probe the dynamics of government-initiated efforts at information dissemination through the Center for Disease Control and Prevention’s (CDC) website and social media account on Twitter. The analysis in this chapter uses NodeXL to examine communication roles played by government and non-governmental actors within this slice of the Twittersphere centered around CDC@gov. As the findings demonstrate, non-governmental actors played key roles in the dissemination of public health messaging. The authors analyze these data with an eye to the potential of social media for public health communication and extrapolate that understanding to the use of digital access and social media for the provision of accurate, official information in other circumstances. While the COVID-19 pandemic was a global health crisis, individuals and households face individual or local crises every day. This angle of vision allows the chapter to conclude with recommendations pertaining to government-led information dissemination for the public good during crisis and non-crisis situations alike. In the concluding section, the authors probe the degree to which eGovernment can also address digital inequalities including connectivity, device, and literacy gaps. The authors offer solutions needed for eGovernment initiatives in light of challenges posed by digital inequalities to ensure that digital information sharing and services are accessible to all.

Details

Technology vs. Government: The Irresistible Force Meets the Immovable Object
Type: Book
ISBN: 978-1-83867-951-4

Keywords

Article
Publication date: 15 January 2024

Nirmalendu Biswas, Deep Chatterjee, Sandip Sarkar and Nirmal K. Manna

This study aims to investigate the influence of wall curvature in a semicircular thermal annular system on magneto-nanofluidic flow, heat transfer and entropy generation. The…

Abstract

Purpose

This study aims to investigate the influence of wall curvature in a semicircular thermal annular system on magneto-nanofluidic flow, heat transfer and entropy generation. The analysis is conducted under constant cooling surface and fluid volume constraints.

Design/methodology/approach

The mathematical equations describing the thermo-fluid flow in the semicircular system are solved using the finite element technique. Four different heating wall configurations are considered, varying the undulation numbers of the heated wall. Parametric variations of bottom wall undulation (f), buoyancy force characterized by the Rayleigh number (Ra), magnetic field strength represented by the Hartmann number (Ha) and inclination of the magnetic field (γ) on the overall thermal performance are studied extensively.

Findings

This study reveals that the fluid circulation strength is maximum in the case of a flat bottom wall. The analysis shows that the bottom wall contour and other control parameters significantly influence fluid flow, entropy production and heat transfer. The modified heated wall with a single undulation exhibits the highest entropy production and thermal convection, leading to a heat transfer enhancement of up to 21.85% compared to a flat bottom. The magnetic field intensity and orientation have a significant effect on heat transfer and irreversibility production.

Research limitations/implications

Further research can explore a wider range of parameter values, alternative heating wall profiles and boundary conditions to expand the understanding of magneto-nanofluidic flow in semicircular thermal systems.

Originality/value

This study introduces a constraint-based analysis of magneto-nanofluidic thermal behavior in a complex semicircular thermal system, providing insights into the impact of wall curvature on heat transfer performance. The findings contribute to the design and optimization of thermal systems in various applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 April 2024

Feng Wang, Mingyue Yue, Quan Yuan and Rong Cao

This research explores the differential effects of pixel-level and object-level visual complexity in firm-generated content (FGC) on consumer engagement in terms of the number of…

Abstract

Purpose

This research explores the differential effects of pixel-level and object-level visual complexity in firm-generated content (FGC) on consumer engagement in terms of the number of likes and shares, and further investigates the moderating role of image brightness.

Design/methodology/approach

Drawing on a deep learning analysis of 85,975 images on a social media platform in China, this study investigates visual complexity in FGC.

Findings

The results indicate that pixel-level complexity increases both the number of likes and shares. Object-level complexity has a U-shaped relationship with the number of likes, while it has an inverted U-shaped relationship with the number of shares. Moreover, image brightness mitigates the effect of pixel-level complexity on likes but amplifies the effect on shares; contrarily, it amplifies the effect of object-level complexity on likes, while mitigating its effect on shares.

Originality/value

Although images play a critical role in FGC, visual data analytics has rarely been used in social media research. This study identified two types of visual complexity and investigated their differential effects. We discuss how the processing of information embedded in visual content influences consumer engagement. The findings enrich the literature on social media and visual marketing.

Details

Marketing Intelligence & Planning, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-4503

Keywords

Article
Publication date: 26 February 2024

Zaifeng Wang, Tiancai Xing and Xiao Wang

We aim to clarify the effect of economic uncertainty on Chinese stock market fluctuations. We extend the understanding of the asymmetric connectedness between economic uncertainty…

Abstract

Purpose

We aim to clarify the effect of economic uncertainty on Chinese stock market fluctuations. We extend the understanding of the asymmetric connectedness between economic uncertainty and stock market risk and provide different characteristics of spillovers from economic uncertainty to both upside and downside risk. Furthermore, we aim to provide the different impact patterns of stock market volatility following several exogenous shocks.

Design/methodology/approach

We construct a Chinese economic uncertainty index using a Factor-Augmented Variable Auto-Regressive Stochastic Volatility (FAVAR-SV) model for high-dimensional data. We then examine the asymmetric impact of realized volatility and economic uncertainty on the long-term volatility components of the stock market through the asymmetric Generalized Autoregressive Conditional Heteroskedasticity-Mixed Data Sampling (GARCH-MIDAS) model.

Findings

Negative news, including negative return-related volatility and higher economic uncertainty, has a greater impact on the long-term volatility components than positive news. During the financial crisis of 2008, economic uncertainty and realized volatility had a significant impact on long-term volatility components but did not constitute long-term volatility components during the 2015 A-share stock market crash and the 2020 COVID-19 pandemic. The two-factor asymmetric GARCH-MIDAS model outperformed the other two models in terms of explanatory power, fitting ability and out-of-sample forecasting ability for the long-term volatility component.

Research limitations/implications

Many GARCH series models can also combine the GARCH series model with the MIDAS method, including but not limited to Exponential GARCH (EGARCH) and Threshold GARCH (TGARCH). These diverse models may exhibit distinct reactions to economic uncertainty. Consequently, further research should be undertaken to juxtapose alternative models for assessing the stock market response.

Practical implications

Our conclusions have important implications for stakeholders, including policymakers, market regulators and investors, to promote market stability. Understanding the asymmetric shock arising from economic uncertainty on volatility enables market participants to assess the potential repercussions of negative news, engage in timely and effective volatility prediction, implement risk management strategies and offer a reference for financial regulators to preemptively address and mitigate systemic financial risks.

Social implications

First, in the face of domestic and international uncertainties and challenges, policymakers must increase communication with the market and improve policy transparency to effectively guide market expectations. Second, stock market authorities should improve the basic regulatory system of the capital market and optimize investor structure. Third, investors should gradually shift to long-term value investment concepts and jointly promote market stability.

Originality/value

This study offers a novel perspective on incorporating a Chinese economic uncertainty index constructed by a high-dimensional FAVAR-SV model into the asymmetric GARCH-MIDAS model.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 8 November 2023

Kenneth Fu Xian Ho, Fang Liu and Liudmila Tarabashkina

The effects of country-of-origin (COO) cues on product evaluations are well documented. However, research on the relative effects of COO compared to other geographical indicators…

Abstract

Purpose

The effects of country-of-origin (COO) cues on product evaluations are well documented. However, research on the relative effects of COO compared to other geographical indicators, such as region-of-origin (ROO), on food purchases is still limited. This study investigates how geographical origin labels influence consumers' perceptions of product value and authenticity of foreign food, as well as subsequent purchase intention (PI) and willingness to pay premium prices (WTPPP). The moderating role of health consciousness on these relationships is also examined due to the coronavirus disease 2019 (COVID-19) pandemic.

Design/methodology/approach

This study uses a between-subjects experimental design conducted with 300 middle- and high-income Chinese consumers aged between 25 and 50 years. Hypotheses were tested using structural equation modelling.

Findings

Whilst under both COO and ROO cues, all five product values positively influenced consumers' WTPPP, only functional, economic and novelty values influenced PI. The ROO cue performed significantly better than the COO cue in eliciting functional, economic and novelty value perceptions, which triggered stronger PI and willingness to pay a premium price. These relationships were mediated by product authenticity (PA) and moderated by consumers' health consciousness (HC).

Practical implications

Because food labels provide salient product information that facilitates consumers' evaluation of products, marketers should assess which product value perceptions they wish to enhance and then choose the appropriate geographical indicators for their labelling strategies.

Originality/value

This study identifies the effects of COO and ROO cues on product values, authenticity, PI and WTPPP. It also provides valuable insights into the role of HC on consumers' purchase decisions, which also aids in understanding the impact of global crises on food purchases.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 36 no. 4
Type: Research Article
ISSN: 1355-5855

Keywords

1 – 10 of 473