Search results

1 – 10 of 278
Article
Publication date: 12 February 2018

Yasser M. Ahmed and A.H. Elbatran

This paper aims to investigate numerically the turbulent flow characteristics over a backward facing step. Different turbulence models with hybrid computational grid have been…

Abstract

Purpose

This paper aims to investigate numerically the turbulent flow characteristics over a backward facing step. Different turbulence models with hybrid computational grid have been used to study the detached flow structure in this case. Comparison between the numerical results and the available experiment data is carried out in the present study. The results of the different turbulence models were in a good agreement with the experimental results. The numerical results also concluded that the k-kl-ω turbulence model gave favorable results compared with the experiment.

Design/methodology/approach

It is very important to study the flow characteristics of detached flows. Therefore, the current study investigates numerically the flow characteristics in backward facing step by using two-, three- and seven-equation turbulence models in the finite volume code ANSYS Fluent. In addition, hybrid grid has been used to improve the capability of the unstructured mesh elements for predicting the flow separation in this case. Comparison between the different turbulence models and the available experimental data was done to find the most suitable turbulence model for simulating such cases of detached flows.

Findings

The present numerical simulations with the different turbulence models predicted efficiently the flow characteristics over the backward facing step. The transition k-kl-ω gave the best acceptable results compared with experimental data. This is a good concluded remark in the fields of fluid mechanics and hydrodynamics because the phenomenon of flow separation is not easy to be predicted numerically and can affect greatly on the predicted drag of moving bodies in many engineering applications.

Originality/value

The CFD results of using different turbulence models have been validated with the experimental work, and the results of k-kl-ω proven acceptable with flow characteristics. The results of the current study conclude that the use of k-kl-ω turbulence model will contribute towards a more efficient utilization in the fields of fluid mechanics and hydrodynamics.

Details

World Journal of Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

Ruyun Hu, Liang Wang and Song Fu

The purpose of this paper is to investigate the characteristic flow structures behind a backward-facing step. With better understanding of unsteady features, effective control…

Abstract

Purpose

The purpose of this paper is to investigate the characteristic flow structures behind a backward-facing step. With better understanding of unsteady features, effective control practice with harmonic actuation is illustrated.

Design/methodology/approach

The present study employs Improved Delayed Detached Eddy Simulation to resolve flow turbulence with a finite-volume approach on structured grid mesh. The coherent structure is displayed through temporal- and spatial-evolution of pressure fluctuations. Characteristic frequencies in different flow regions are extracted using fast Fourier transform. Dynamic mode decomposition method is applied to uncover the critical dynamic modes.

Findings

The time- and spanwise-averaged quantities agree well with experimental data. It is observed that two distinct modes exist: shear layer mode and shedding mode. The former is related to Kelvin-Helmholtz instability mechanism, vortex pairing and step mode with non-dimensional frequency, Sth,st at around 0.2. The latter is of multi-scale, with a typical coherent structure shedding frequency, Sth,st at 0.074. Step mode interacts with shedding mode in the reattachment region, resulting in the low-frequency characteristics.

Originality/value

An optimal excitation frequency to reduce recirculation bubble length is obtained at about Sth,st =0.2 with an explanation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1999

C. Nonino, G. Comini and G. Croce

Three‐dimensional flows over backward facing s.tif are analysed by means of a finite element procedure, which shares many features with the SIMPLER method. In fact, given an…

Abstract

Three‐dimensional flows over backward facing s.tif are analysed by means of a finite element procedure, which shares many features with the SIMPLER method. In fact, given an initial or guessed velocity field, the pseudovelocities, i.e. the velocities that would prevail in the absence of the pressure field, are found first. Then, by enforcing continuity on the pseudovelocity field, the tentative pressure is estimated, and the momentum equations are solved in sequence for velocity components. Afterwards, continuity is enforced again to find corrections that are used to modify the velocity field and the estimated pressure field. Finally, whenever necessary, the energy equation is solved before moving to the next step.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1992

ZHONG QIN and OLSON

A numerical method is developed for steady and unsteady turbulent flows with significant regions of separation. A finite element formulation of the Navier‐Stokes equations with a…

Abstract

A numerical method is developed for steady and unsteady turbulent flows with significant regions of separation. A finite element formulation of the Navier‐Stokes equations with a modified Baldwin‐Lomax eddy viscosity closure is used. The method of averaging is employed to obtain a periodic solution of unsteady flow. The formulation is tested on a problem of flow over a backward‐facing step and the results are compared with experimental and other numerical results. The gross features of both steady and unsteady flows are reasonably well predicted by the numerical analysis, at least for the limited range of parameters tested so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 August 2008

Suhil Kiwan

Studying the effect of localized wall discharge on the fluid flow and heat transfer for a flow over backward facing step is the main purpose of this paper. Jet is used to control…

Abstract

Purpose

Studying the effect of localized wall discharge on the fluid flow and heat transfer for a flow over backward facing step is the main purpose of this paper. Jet is used to control the reattachment length which controls the fluid flow and heat transfer downstream the step. Several parameters are to be investigated: geometric; expansion ratio, location of the jet, and jet angle flow; Reynolds number, jet velocity.

Design/methodology/approach

Numerical simulation using both the standard Kε and renormalized group turbulence theory (RNG) Kε models are used to model flow in the computational domain. The energy equation is also used to model the heat transfer characteristics of the flow. The model equations are solved numerically using a finite volume code.

Findings

It is found that the presence of the wall jet at a proper location can significantly influence the flow and heat characteristics of the problem. Furthermore, varying the ratio of the jet velocity to the main stream velocity could play an important role in controlling the size of the circulating bubble and, therefore, the fluid and heat transfer characteristics of the flow, whereas, the expansion ratio has less influence. It is also found that increasing Reynolds number increases the value of maximum heat transfer but has less influence on either its location or the reattachment length.

Research limitations/implications

The range of the Reynolds number considered in this research covers only the turbulent regime. The research does not cover laminar flows. The results and conclusions cover only three values of expansion ratios. Namely (expansion ratio (ER)=1.67, 1.8 and 2). Conclusions should not be read beyond these values of ER.

Practical implications

This work gives designers of similar flows a new method of controlling the fluid flow and heat transfer by varying jet angle.

Originality/value

This work has not been done before and it can initiate additional research projects as investigating the effect of applying wall jets in combustors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 2006

Masoud Darbandi, Mohammad Taeibi‐Rahni and Ali Reza Naderi

One major challenge in turbulent flow applications is to control the recirculation zone behind the backward‐facing step (BFS). One simple idea to do so is to modify the original…

Abstract

Purpose

One major challenge in turbulent flow applications is to control the recirculation zone behind the backward‐facing step (BFS). One simple idea to do so is to modify the original BFS geometry, of course, without causing adverse or undesirable impacts on the original characteristics of the primary stream. The main objective of this work is to examine the solidity of the recirculation zone behind several different geometries which are slightly to moderately different from the original BFS geometry.

Design/methodology/approach

The implemented modifications cause complicated irregularities at the boundaries of the domain. The experience shows that the mesh distribution around these irregularities plays a critical role in the accuracy of the numerical solutions. To achieve the most accurate solutions with the least computational efforts, we use a robust hybrid strategy to distribute the computational grids in the domain. Additionally, a suitable numerical algorithm capable of handling hybrid grid topologies is properly extended to analyze the flow field. The current fully implicit method utilizes a physical pressure‐based upwinding scheme capable of working on hybrid mesh.

Findings

The extended algorithm is very robust and obtains very accurate solutions for the complex flow fields despite utilizing very coarse grid resolutions. Additionally, different proposed geometries revealed very similar separated regions behind the step and performed minor differences in the location of the reattachment points.

Research limitations/implications

The current study is fulfilled two‐dimensionally. However, the measurements in testing regular BFS problems have shown that the separated shear layer behind the step is not affected by 3D influences provided that the width of channel is sufficiently wide. A similar conclusion is anticipated here.

Practical implications

The problem occurs in the pipe and channel expansions, combustion chambers, flow over flying objects with abrupt contraction on their external surfaces, etc.

Originality/value

A novel pressure‐based upwinding strategy is properly employed to solve flow on multiblocked hybrid grid topologies. This strategy takes into account the physics associated with all the transports in the flow field. To study the impact of shape improvement, several modified BFS configurations were suggested and examined. These configurations need only little additional manufacturing cost to be fabricated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 1998

Koki Kishinami, Hakaru Saito, Jun Suzuki, Ahmed Hamza H. Ali, Hisashi Umeki and Noriyuki Kitano

Combined forced and free laminar convective heat transfer on a vertical plate with a backward‐facing step has been studied numerically and experimentally, considering the effects…

Abstract

Combined forced and free laminar convective heat transfer on a vertical plate with a backward‐facing step has been studied numerically and experimentally, considering the effects of the interaction between the buoyancy and inertia forces which play a significant role in this phenomenon with the step‐geometry factor of d/L. The convective heat transfer behavior in connection with the reattachment and recirculation flows appearing in the step region has been investigated based on the numerical calculations and Mach‐Zehnder interferometer measurement under the wide range of the thermal condition. The behaviors of local Nusselt number NuL, velocity and temperature boundary layers and streamline fields in the recirculating region have been discussed for the various parameters of Grashof number GrL, Reynolds number ReL and the geometry factor d/L. The characteristic behavior of this convection heat transfer, including the vortex flow mode in the recirculating region and the unstable fluctuating mode near the reattaching point appearing at the specific condition, has been clarified numerically and experimentally by introducing the generalized coupling parameter GrL/ReL2 and geometry factor d/L.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 April 2014

Wei Wang, Spiridon Siouris and Ning Qin

The purpose of this article is to present numerical investigations of flow control with piezoelectric actuators on a backward facing step (BFS) and fluidic vortex generators on a…

Abstract

Purpose

The purpose of this article is to present numerical investigations of flow control with piezoelectric actuators on a backward facing step (BFS) and fluidic vortex generators on a NACA0015 aerofoil for the reattachment and separation control through the manipulation of the Reynolds stresses.

Design/methodology/approach

The unsteady flow phenomena associated with both devices are simulated using Spalart–Allmaras-based hybrid Reynolds averaged Navier-Stokes (RANS)/large eddy simulation (LES) models (detached eddy simulation (DES), delayed detached eddy simulation (DDES) and improved delayed detached eddy simulation (IDDES)), using an in-house computational fluid dynamics (CFD) solver. Results from these computations are compared with experimental observations, enabling their reliable assessment through the detailed investigation of the Reynolds stresses and also the separation and reattachment.

Findings

All the hybrid RANS/LES methods investigated in this article predict reasonable results for the BFS case, while only IDDES captures the separation point as measured in the experiments. The oscillating surface flow control method by piezoelectric actuators applied to the BFS case demonstrates that the Reynolds stresses in the controlled case decrease, and that a slightly nearer reattachment is achieved for the given actuation. The fluidic vortex generators on the surface of the NACA0015 case force the separated flow to fully reattach on the wing. Although skin friction is increased, there is a significant decrease in Reynolds stresses and an increase in lift to drag ratio.

Originality/value

The value of this article lies in the assessment of the hybrid RANS/LES models in terms of separation and reattachment for the cases of the backward-facing step and NACA0015 wing, and their further application in active flow control.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 25 February 2014

Ahad Zarghami, Stefano Ubertini and Sauro Succi

The main purpose of this paper is to develop a novel thermal lattice Boltzmann method (LBM) based on finite volume (FV) formulation. Validation of the suggested formulation is…

Abstract

Purpose

The main purpose of this paper is to develop a novel thermal lattice Boltzmann method (LBM) based on finite volume (FV) formulation. Validation of the suggested formulation is performed by simulating plane Poiseuille, backward-facing step and flow over circular cylinder.

Design/methodology/approach

For this purpose, a cell-centered scheme is used to discretize the convection operator and the double distribution function model is applied to describe the temperature field. To enhance stability, weighting factors are defined as flux correctors on a D2Q9 lattice.

Findings

The introduction of pressure-temperature-dependent flux-control coefficients in the streaming operator, in conjunction with suitable boundary conditions, is shown to result in enhanced numerical stability of the scheme. In all cases, excellent agreement with the existing literature is found and shows that the presented method is a promising scheme in simulating thermo-hydrodynamic phenomena.

Originality/value

A stable and accurate FV formulation of the thermal DDF-LBM is presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 278