Search results

1 – 10 of 473
Article
Publication date: 29 June 2018

Zeqi Jiang, Jianhua Fang, Fei Chen, Boshui Chen and Kecheng Gu

This paper aims at understanding tribological properties of lubricating oils doped with zinc dithiophosphate(ZDDP) with and without electromagnetic field impact.

Abstract

Purpose

This paper aims at understanding tribological properties of lubricating oils doped with zinc dithiophosphate(ZDDP) with and without electromagnetic field impact.

Design/methodology/approach

The friction and wear properties of the oils formulated with zinc butyloctyl dithiophosphate (T202) or zinc dioctyl dithiophosphate (T203) under electromagnetic field or nonelectromagnetic field were evaluated on a modified four-ball tribotester. The characteristics of the worn surfaces obtained from electromagnetic or nonelectromagnetic field conditions were analyzed by scanning electronic microscopy, energy dispersive spectrometer and X-ray photoelectron spectroscopy. This paper focuses on understanding influence of electromagnetic field on lubrication effect of the ZDDP-formulated oils.

Findings

The electromagnetic field could effectively facilitate anti-wear and friction-reducing properties of the oils doped with T202 or T203 as compared to those without electromagnetism affection, and the T203-doped oils were more susceptible to the electromagnetic field. The improvement of anti-wear and friction-reducing abilities of the tested oils were mainly attributed to the promoted tribochemical reactions and the modification of the worn surfaces (forming Zn-Fe solid solution) induced by the electromagnetic field.

Originality/value

This paper has revealed that tribological performances of ZDDP-doped oils could be improved by the electromagnetic field and discussed its lubrication mechanisms. Investigating tribological properties of additives from the viewpoint of electromagnetics is a new attempt, which has significance not only for the choose and designing of additives in electromagnetic condition but also for development of tribological theories and practices.

Article
Publication date: 4 July 2018

Qiang He, Zhigang Wang, Anling Li, Yachen Guo and Songfeng Liu

Nanoparticles as the grease additives play an important role in anti-wear and friction-reducing property during the mechanical operation. To improve the lubrication action of…

Abstract

Purpose

Nanoparticles as the grease additives play an important role in anti-wear and friction-reducing property during the mechanical operation. To improve the lubrication action of grease, the tribological behavior of lithium-based greases with single (nanometer Al2O3 or nanometer ZnO) and composite additives (Al2O3–ZnO nanoparticles) were investigated in this paper.

Design/methodology/approach

The morphology and microstructure of nanoparticles were characterized by means of transmission electron microscope and X-ray diffraction. Tribological properties of different nanoparticles as additives in lithium-based greases were evaluated using a universal friction and wear testing machine. In addition, the friction coefficient (COF) and wear scar diameter were analyzed. The surface morphology and element overlay of the worn steel surface were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), respectively.

Findings

The results show that the greases with nanometer Al2O3 or nanometer ZnO and the composite nanoparticles additives both exhibit lower COFs and wear scar diameters than those of base grease. And the grease with Al2O3–ZnO composite nanoparticles possesses much lower COF and shows much better wear resistance than greases with single additives. When the additives contents are 0.4 Wt.% Al2O3 and 0.6 Wt.% ZnO, the composite nanoparticles-based grease exhibits the lowest mean COF (0.04) and wear scar diameter (0.65 mm), which is about 160% and 28% lower than those of base grease, respectively.

Originality/value

The main innovative thought of this work lies in dealing with the grease using single or composite nanoparticles. And through a serial contrast experiments, the anti-wear and friction-reducing property with different nanoparticles additives in lithium grease are evaluated.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 March 2019

Gitesh Kumar, Hem Chander Garg and Ajay Gijawara

This paper aims to report the friction and wear characteristics of refined soybean oil (RSBO) blended with copper oxide (CuO) nanoparticles and zinc dialkyldithiophosphate (ZDDP…

Abstract

Purpose

This paper aims to report the friction and wear characteristics of refined soybean oil (RSBO) blended with copper oxide (CuO) nanoparticles and zinc dialkyldithiophosphate (ZDDP) as additives.

Design/methodology/approach

Four different concentrations 0.04, 0.05, 0.1 and 0.2 Wt.% of CuO nanoparticles were added with ZDDP in RSBO. The friction and wear characteristics of lubricants have been investigated on a pin-on-disc tribotester under loads of 120 and 180 N, with rotating speeds of 1,200 and 1,500 rpm in half hour of operating time. The dispersion stability of CuO nanoparticles has been analyzed using ultraviolet visible (UV-Vis) spectroscopy. The wearout surface of pins has been examined by using a scanning electron microscope.

Findings

The results revealed that there is a reduction in the friction and wear by the addition of CuO nanoparticles and ZDDP in RSBO. Coefficient of friction increases at a high sliding speed for RSBO with ZDDP. From UV-Vis spectroscopy, it is observed that 100 ml of oleic acid surfactant per gram of CuO nanoparticles has stable dispersion in RSBO.

Originality/value

The addition of ZDDP and CuO nanoparticles in RSBO is more efficient to reduce the friction and wear in comparison to base oil. The optimum concentration of CuO nanoparticles in RSBO is 0.05 Wt.%.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 August 2019

Ming Yang, Zhengfeng Jia, Denghu Wei, Yunxia Wang, Xianjuan Pang, Jinming Zhen, Ran Zhang and Bo Yu

The purpose of this paper is to investigate the tribological properties of carbonized polydopamine/reduced graphene oxide (CPDA/rGO) composite coatings.

Abstract

Purpose

The purpose of this paper is to investigate the tribological properties of carbonized polydopamine/reduced graphene oxide (CPDA/rGO) composite coatings.

Design/methodology/approach

CPDA/rGO composite coatings were prepared using the spray technique and subsequent pyrolysis under argon. The transmission electron microscopy, field-emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy revealed the conversion of PDA and GO into CPDA and rGO, respectively.

Findings

The results of tribological investigations show that the CPDA/rGO composite coatings with heat treatment at 300°C possess much better friction-reduction and anti-wear properties.

Originality/value

The worn surfaces of the PDA/GO composite films after heat treatment at 300°C were much smoother than that of the copper substrate. The tribofilms containing C, N, O and Cu played an important role on reducing friction and increasing wear resistance.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2021

Hong Zhang, Sheng Han, Wenjing Hu and Jiusheng Li

The purpose of this paper is to improve the properties of metal nanoparticles which are easy to agglomerate and hard to disperse evenly, thus limiting the application of metal…

Abstract

Purpose

The purpose of this paper is to improve the properties of metal nanoparticles which are easy to agglomerate and hard to disperse evenly, thus limiting the application of metal nanoparticles in grease. A novel technology was proposed for modifying metal oxide to improve the dispersibility of nanoparticles.

Design/methodology/approach

SA-TiO2 nanoparticles were synthesized using an in-situ esterification method followed by surface modification with stearic acid. The microstructure of the nanoparticles was characterized by scanning electron microscope, transmission electron microscope and Fourier transform infrared spectroscopy and their thermal stability was evaluated by thermogravimetric analyzer. The tribological properties of the SA-TiO2 nanoparticles as additives in lithium grease were evaluated with a four-ball tester and TE77 reciprocating friction tester. The worn surfaces of the steel balls were investigated by EDS and XPS.

Findings

The prepared nanoparticles can be well dispersed in the lithium grease and possess much better tribological properties compared to traditional nanoparticles. The results indicated that the excellent tribological performance of SA-TiO2 was attributed to the chemical reaction film composing of Fe2O3, iron oxide and other organic compounds.

Originality/value

This paper provides a method to prevent the agglomeration of nano-TiO2 by surface modification with stearic acid. And the prepared nanoparticles can effectively improve the tribology performance of lithium grease.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Xinlei Gao, Tingting Wang and Zhong Cheng

Ultra-high molecular weight polyethylene (UHMWPE) has an excellent performance and application value; however, as a tribological material, its main drawback is its poor…

Abstract

Purpose

Ultra-high molecular weight polyethylene (UHMWPE) has an excellent performance and application value; however, as a tribological material, its main drawback is its poor performance under dry friction, impacting its ability to work in high-speed dry friction conditions. Modification of UHMWPE can be carried out to overcome these issues. A significant number of inorganic materials have been used to modify UHMWPE and provide it with good tribological performance. However, thus far, there has been no systematic investigation into the methodology of modifying UHMWPE. The authors take a quantitative approach to determine the structure tribo-ability relationship and basic principles of screening of inorganic compounds suited to modify UHMWPE.

Design/methodology/approach

The tribological properties of modified UHMWPE using a series of inorganic additives have been qualitatively studied by the authors’ research group previously. In this study, basic quantitative structure tribo-ability relationships (QSTRs) of inorganic additives for modifying UHMWPE were studied to predict tribological properties. A set of 15 inorganic compounds and their tribological data were used to study the predictive capability of QSTR towards inorganic additives properties.

Findings

The results show that the anti-wear and friction-reducing properties of these inorganic compounds correlate with the calculated parameters of entropy and dipole moment. Increased entropy and smaller dipole moment can effectively improve the anti-wear and friction-reducing ability of inorganic compounds as UHMWPE additives. Additives with larger molecular weight, lower hardness and lower melting and boiling points provide good tribological properties for UHMWPE. For inorganic compounds to act as UHMWPE additives, the chemical bond should be less covalent and have more ionic character.

Research limitations/implications

Only 15 inorganic compounds and their tribological data were used to study the predictive capability of QSTR towards inorganic additives properties. If the samples number is more than 30, the other QSTR methodology can be used to study the modified UHMWPE, and the models finding can be more precise.

Practical implications

A QSTR model for modified UHMWPE has been studied systematically. While the results are not more precise and detailed, the model provides a new way to explore the modified UHMWPE characteristics and to reveal new insight into the friction and wear process.

Social implications

Because the method of studying tribological materials is entirely different from others, the authors want to present the works and discuss it with colleagues.

Originality/value

The paper presents a new method to study the modified UHMWPE. A QSTR is used to study the tribology capability of compounds from calculated structure descriptors. This study uses the Hartree–Fock ab initio method to establish a QSTR prediction model to estimate the ability of 15 inorganic compounds to act as anti-wear and friction-reducing additives for UHMWPE.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 May 2023

Yuhai Shen, Yanshuang Wang, Jianghai Lin, Pu Zhang, Xudong Gao and Zijun Wang

This paper aims to determine a suitable anti-wear and friction-reducing compounding additive for lithium greases (LG) by investigating the effects of three single additives…

Abstract

Purpose

This paper aims to determine a suitable anti-wear and friction-reducing compounding additive for lithium greases (LG) by investigating the effects of three single additives potassium borate (PB), zinc dialkyl dithiophosphate and molybdenum dialkyl dithiophosphate (MoDDP) and two compound additives on the friction, wear and extreme pressure properties of LG.

Design/methodology/approach

The effects of the above five additives on the friction, wear and extreme pressure properties of LG were investigated using an SRV-5 friction tester. An X-ray photoelectron spectrometer was used to analyze the various elements presented on the wear surface as well as the types of compounds.

Findings

The compound additive suitable for grease consists of PB and MoDDP, which have excellent friction reduction, anti-wear and extreme pressure properties. And a boundary protection film consisting of oxide and MoS2 is formed on the friction surface, thus improving the friction reduction and anti-wear performance of the grease.

Originality/value

This study can improve the anti-wear and friction-reduction performance of greases, which is of great importance in the field of industrial lubrication. The results of this paper are expected to be useful to researchers and academics of grease.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0350/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 July 2021

Penghao Qi, Shijian Wang, Jing Li, Yue Li and Guangneng Dong

The purpose of this study is to reduce the use of Zinc dialkyl dithiophosphates (ZDDP) and improve the frictional properties and thermal oxidation stability of Perfluoropolyether…

203

Abstract

Purpose

The purpose of this study is to reduce the use of Zinc dialkyl dithiophosphates (ZDDP) and improve the frictional properties and thermal oxidation stability of Perfluoropolyether (PFPE) grease by adding antioxidant additives. The addition of antioxidants can reduce the consumption of ZDDP as an antioxidant, thus improving the anti-wear efficiency of ZDDP and reducing the excess phosphorus element in the grease.

Design/methodology/approach

In this study, an antioxidant with good comprehensive performance was selected from several antioxidants by tribological tests and high-temperature tests. Then, the effect of its combination additive with ZDDP on PFPE grease was investigated. The anti-wear property, anti-friction property, thermal oxidation stability and extreme pressure property of greases containing different proportions of ZDDP and antioxidant were tested by four-ball tester and synchronous thermal analyzer (STA). The effects of additives on properties of grease were analyzed by SEM, EDS, LSCM, XPS and FT-IR.

Findings

The research shows that 2,6-Di-tert-butyl-4-methylphenol (BHT) can be used as an antioxidant in combined additives to reduce the antioxidant reactions of ZDDP, thus improving the anti-wear efficiency of ZDDP and further enhancing the anti-wear performance of the grease. Moreover, BHT and ZDDP have a synergistic effect on the high temperature performance of the PFPE grease due to their different antioxidant mechanisms.

Social implications

In this paper, the problems related to PFPE grease are studied, which has a certain guiding effect on the industrial application of fluorine grease and the related formulation design.

Originality/value

In this paper, the properties of PFPE grease under different lubricating condition were studied. The synergistic lubrication effect of antioxidant and ZDDP are discussed. It provides experimental and theoretical support for reducing the content of ZDDP and improving the performance of additives.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 September 2017

Juozas Padgurskas, Raimundas Rukuiža, Ihor Mandziuk, Arturas Kupcinskas, Katerina Prisyazhna, Andrei Grigoriev, Inna Kavaliova and Sergej Revo

The purpose of this paper is to report on the tribological properties of beef tallow grease and improvements therein through modification with special processing, polymeric…

Abstract

Purpose

The purpose of this paper is to report on the tribological properties of beef tallow grease and improvements therein through modification with special processing, polymeric compounds and additives.

Design/methodology/approach

Pure original beef tallow grease was used as a biological lubricating grease reference material for the tribological research. Beef tallow was modified and synthesized by adding special biological anti-oxidant additives, LZ anti-wear additives, waste polyethylene terephthalate (PET) polymer compounds and thermally processed graphite.

Findings

Rheometric measurements indicate that the beef tallow grease modification technology used in this study enables control of the synthesis process to produce lubricants with the required microstructure. Investigation results of the tribological properties of differently modified greases show that beef tallow synthesized with polymer additives efficiently operates together with anti-wear additives to reduce friction and wear. The grease compound with thermally processed graphite has good tribological properties at 300 N load levels. The critical load level of lubricating greases could be significantly increased through the use of anti-wear additives and thermally processed graphite.

Originality/value

Investigation results of the tribological properties of differently modified beef tallow greases show that beef tallow synthesized with polymer additives efficiently operates together with anti-wear additives to reduce friction and wear. The critical load level of lubricating beef tallow greases could be significantly increased using anti-wear additives and thermally processed graphite.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 June 2012

Meirong Yi, Xiaoying He, Huan Chen and Lifeng Hao

Through practical tests, it has been found that steel balls based on different standards could affect tribological performances of the same lubricant, but unfortunately, past…

Abstract

Purpose

Through practical tests, it has been found that steel balls based on different standards could affect tribological performances of the same lubricant, but unfortunately, past researches in the field have been quite inadequate. The aim of this paper, therefore, is conscientiously to study the problem.

Design/methodology/approach

The anti‐wear properties of four kinds of lubricants were evaluated by four‐ball tester using two kinds of steel balls based on different standards. The reason for different anti‐wear properties of the same lubricant was also discussed using hardness tester and scanning electron microscope with an energy dispersive spectrometer (SEM/EDS).

Findings

It was found that steel balls based on different standards could affect the tribological results for the same lubricant. The reason could lie in the surface chemical composition, surface roughness and hardness of steel balls which originated from the subtle difference of different standards.

Originality/value

The paper shows that, as far as evaluating anti‐wear properties is concerned, steel ball based on AISI Standard Steel No. E‐52100 is a better choice than that based on Chinese standard GB 308.

Details

Industrial Lubrication and Tribology, vol. 64 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 473