Search results

1 – 10 of over 2000
Article
Publication date: 1 December 2002

Ken Young, Ian Pearson and R. Bull

A parameter has been identified that can be used to calculate a joint's bond‐line thicknesses. This was successfully represented by a fourth order polynomial expression and has…

Abstract

A parameter has been identified that can be used to calculate a joint's bond‐line thicknesses. This was successfully represented by a fourth order polynomial expression and has been used to predict the volume of adhesive required to precisely fill structural joints of unknown bond‐line thickness. This technology was further used to automatically control adhesive injection into pre‐assembled vehicle structural joints for use in an automated production environment. This has great advantage over adhesive application prior to joint assembly as the adhesive remains in the joint rather than contaminating the adherend surface and the bond‐line remains filled. This will be of benefit to the automotive industry. The method is adaptable and can be re‐programmed to cope with a number of applications.

Details

Assembly Automation, vol. 22 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 August 2023

Erwin Molino Alvarez, Sergio Andres Quintana González, Luis Lisandro Lopez Taborda and Enrique Esteban Niebles Nuñez

Additive manufacturing has disadvantages, such as the maximum part size being limited by the machine’s working volume. Therefore, if a part more considerable than the working…

Abstract

Purpose

Additive manufacturing has disadvantages, such as the maximum part size being limited by the machine’s working volume. Therefore, if a part more considerable than the working volume is required, the part is produced in parts and joined together. Among the many methods of joining thermoplastic parts, adhesives and mechanical interlocking are considered. This study aims to characterize and optimize mechanically stressed adhesive joints combined with female and male mechanical interlocking on acrylonitrile butadiene styrene (ABS) specimens made with fused filament fabrication (FFF) so that the joint strength is as close as possible to the strength of the base material.

Design/methodology/approach

This study characterized the subject’s state of the art to justify the decisions regarding the experimental design planned in this research. Subsequently, this study designed, executed and analyzed the experiment using a statistical analysis of variance. The output variables were yield strength and tensile strength. The input variables were two different cyanoacrylate adhesives, two different types of mechanical interlock (truncated pyramid and cylindrical pin) and the dimensions of each type of mechanical interlock. This study used simple and factorial experiments to select the best adhesive and interlocking to be optimized using the response surface and the steep ascent method.

Findings

The two adhesives have no statistical difference, but they show different data dispersion. The design or yield stress was a determining factor for selecting the optimal specimen, with cylindrical geometry exhibiting higher resistance at initial failure. Geometry type is crucial due to the presence of stress concentrators. The cylindrical geometry with fewer stress concentrators demonstrated better tensile strength. Ultimately, the specimen with a mechanically reinforced joint featuring a cylindrical pin of radius 5.45 mm and height of 4.6 mm exhibited the maximum tensile and yield strength.

Originality/value

Previous research suggests that a research opportunity is the combination of bonding methods in FFF or fused deposition modeling, which is not a frequent topic, and this research to enrich that topic combines the adhesive with mechanically interlocked joints and studies it experimentally for FFF materials, to provide unpublished information of the performance of the adhesive joint with mechanical interlocking, to designers and manufacturers of this technology.

Article
Publication date: 10 January 2023

Lokamanya Chikmath, M.N. Ramanath, Syed Imtiaz and H. Murthy

This paper aims to study the benefits of use of bi-adhesive (combination of two different adhesives) over conventional single adhesive in bonded lap joints. Characterise damage…

Abstract

Purpose

This paper aims to study the benefits of use of bi-adhesive (combination of two different adhesives) over conventional single adhesive in bonded lap joints. Characterise damage severity due to cohesive and adherent failure as feedback for operating load levels that assist in developing damage tolerance design of the adhesively bonded joints.

Design/methodology/approach

Single lap joint where the adherent plate is made up of aluminium alloy joined together with bi-adhesives is analysed. The nature of adhesives ranges from brittle, elastic-plastic, moderately ductile to largely ductile. Numerical analysis is performed considering the material and geometric non-linear behaviour of the joint. The optimum bond ratio of bi-adhesives and the effect of the location of adhesive on the stress distribution are studied. The cohesive zone modelling (CZM) is adopted to account for the cohesive failure of the joint. The adherent plate failure is also addressed by modelling and studying the behaviour of the crack at different locations in the plate using modified virtual crack closure integral (MVCCI).

Findings

The results obtained from the stress analysis show some important characteristic behaviour of the bi-adhesive joint. Although bi-adhesive is expected to result in improved joint strength, the purpose gets defeated if a brittle adhesive is used at the corners and ductile adhesive at the middle. The joint strength based on CZM, evaluated for a single adhesive, is in good comparison with the experimental results from the literature. Also, the location of the crack in the adherent plate plays a significant role in the failure of the joint.

Originality/value

Estimating joint strength for the bi-adhesive model using CZM and evaluating damage severity in the presence of de-bond and crack in the bi-adhesive lap joint model assists in developing robust damage tolerance design models of such joints.

Details

International Journal of Structural Integrity, vol. 14 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 March 1993

J. Liu

The purpose of the work is to investigate the feasibility of using anisotropically conductive adhesives to join surface‐mount devices as solder replacement. The results from a…

Abstract

The purpose of the work is to investigate the feasibility of using anisotropically conductive adhesives to join surface‐mount devices as solder replacement. The results from a literature and market survey are reported. Based on industrial demands, two anisotropically conductive adhesives were chosen for the experimental work. During the experimental work, the conductive adhesive joints were produced at various curing conditions. The joints were characterised by shear testing and electrical resistance measurement after ageing at 20, 70 and 120°C to 1000 hours. Optical and scanning electron microscopy were used to characterise the adhesive joints. In addition to this, temperature cycling tests, humidity test and pull tensile tests were used to qualify the adhesive joint reliability and quality. From the results of the present work, it can be concluded that the anisotropically conductive adhesive A joints are stable in the 85°C/85% RH environment and therefore have better corrosion resistance than adhesive B joints. Neither of the adhesives can pass temperature cycling from −55 to 125°C for 1000 cycles according to military standard 883C.

Details

Circuit World, vol. 19 no. 4
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 7 September 2015

Lilan Gao, Hong Gao and Xu Chen

This review paper aims to provide a better understanding of formulation and processing of anisotropic conductive adhesive film (ACF) material and to summarize the significant…

Abstract

Purpose

This review paper aims to provide a better understanding of formulation and processing of anisotropic conductive adhesive film (ACF) material and to summarize the significant research and development work for the mechanical properties of ACF material and joints, which helps to the development and application of ACF joints with better reliability in microelectronic packaging systems.

Design/methodology/approach

The ACF material was cured at high temperature of 190°C, and the cured ACF was tested by conducting the tensile experiments with uniaxial and cyclic loads. The ACF joint was obtained with process of pre-bonding and final bonding. The impact tests and shear tests of ACF joints were completed with different aging conditions such as high temperature, thermal cycling and hygrothermal aging.

Findings

The cured ACF exhibited unique time-, temperature- and loading rate-dependent behaviors and a strong memory of loading history. Prior stress cycling with higher mean stress or stress amplitude restrained the ratcheting strain in subsequent cycling with lower mean stress or stress amplitude. The impact strength and adhesive strength of ACF joints increased with increase of bonding temperature, but they decreased with increase of environment temperature. The adhesive strength and life of ACF joints decreased with hygrothermal aging, whereas increased firstly and then decreased with thermal cycling.

Originality/value

This study is to review the recent investigations on the mechanical properties of ACF material and joints in microelectronic packaging applications.

Details

Soldering & Surface Mount Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 June 2000

I.A. Ashcroft, D.J. Hughes and S.J. Shaw

Fibre reinforced polymer composites (FRPs) are finding increasing usage in many industrial sectors. Adhesive bonding is often the most attractive joining technique for these…

3185

Abstract

Fibre reinforced polymer composites (FRPs) are finding increasing usage in many industrial sectors. Adhesive bonding is often the most attractive joining technique for these materials in terms of structural efficiency and cost of manufacture. However, concerns regarding the lack of reliable design methods, the long term ageing behaviour and the difficulties in non‐destructive evaluation and repair of bonded joints has led to a reluctance to use adhesives in primary structures. DERA has been involved in the assessment of adhesive bonding for joining FRPs for many years. This paper focuses on investigations at DERA into the effects that environment and fatigue loading have on the performance of bonded composite joints, and briefly reviews current approaches to strength and lifetime prediction. It is seen that adhesively bonded composite joints can be significantly affected by the service environment, however, this is highly dependent on the joint type and materials involved.

Details

Assembly Automation, vol. 20 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 January 2024

Uğur Kemiklioğlu, Sermet Demir and Caner Yüksel

Adhesively bonded joints are used in many fields, especially in the automotive, marine, aviation, defense and outdoor industries. Adhesive bonding offers advantages over…

Abstract

Purpose

Adhesively bonded joints are used in many fields, especially in the automotive, marine, aviation, defense and outdoor industries. Adhesive bonding offers advantages over traditional mechanical methods, including the ability to join diverse materials, even load distribution and efficient thermal-electrical insulation. This study aims to investigate the mechanical properties of adhesively bonded joints, focusing on adherends produced with auxetic and flat surfaces adhered with varying adhesive thicknesses.

Design/methodology/approach

The research uses three-dimensional (3D)-printed materials, polyethylene terephthalate glycol and polylactic acid, and two adhesive types with ductile and brittle properties for single lap joints, analyzing their mechanical performance through tensile testing. The adhesion region of one of these adherends was formed with a flat surface and the other with an auxetic surface. Adhesively bonded joints were produced with 0.2, 0.3 and 0.4 mm bonding thickness.

Findings

Results reveal that auxetic adherends exhibit higher strength compared to flat surfaces. Interestingly, the strength of ductile adhesives in auxetic bonded joints increases with adhesive thickness, while brittle adhesive strength decreases with thicker auxetic bonds. Moreover, the auxetic structure displays reduced elongation under comparable force.

Originality/value

The findings emphasize the intricate interplay between adhesive type, bonded surface configuration of adherend and bonding thickness, crucial for understanding the mechanical behavior of adhesively bonded joints in the context of 3D-printed materials.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 8 March 2022

Andrea Spaggiari and Filippo Favali

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the…

Abstract

Purpose

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the maximum dimension of the 3D printed parts, which is typically limited, by joining the parts with structural adhesive, without losing strength and stiffness and keeping the major asset of polymeric 3 D printing: freedom of shape of the system and low cost of parts.

Design/methodology/approach

The materials used in the paper are the following. The adhesive considered is a commercial inexpensive acrylic, quite similar to superglue, applicable with almost no surface preparation and fast curing, as time constraint is one of the key problems that affects industrial adhesive applications. The 3D printed parts were in acrylonitrile butadiene styrene (ABS), obtained with a Fortus 250mc FDM machine, from Stratasys. The work first compares flat overlap joint with joints designed to permit mechanical interlocking of the adherends and then to a monolithic component with the same geometry. Single lap, joggle lap and double lap joints are the configurations experimentally characterized following a design of experiment approach.

Findings

The results show a failure in the substrate, due to the low strength of the polymeric adherends for the first batch of typical bonded configurations, single lap, joggle lap and double lap. The central bonded area, with an increased global thickness, never does fail, and the adhesive is able to transfer the load both with and without mechanical interlocking. An additional set of scarf joints was also tested to promote adhesive failure as well as to retrieve the adhesive strength in this application. The results shows that bonding of polymeric AM parts is able to express its full potential compared with a monolithic solution even though the joint fails prematurely in the adherend due to the bending stresses and the notches present in the lap joints.

Research limitations/implications

Because of the 3D printed polymeric material adopted, the results may be generalized only when the elastic properties of the adherends and of the adhesive are similar, so it is not possible to extend the findings of the work to metallic additive manufactured components.

Practical implications

The paper shows that the adhesives are feasible way to expand the potentiality of 3 D printed equipment to obtain larger parts with equivalent mechanical properties. The paper also shows that the scarf joint, which fails in the adhesive first, can be used to extract information about the adhesive strength, useful for the designers which have to combine adhesive and additive manufactured polymeric parts.

Originality/value

To the best of the researchers’ knowledge, there are scarce quantitative information in technical literature about the performance of additive manufactured parts in combination with structural adhesives and this work provides an insight on this interesting subject. This manuscript provides a feasible way of using rapid prototyping techniques in combination with adhesive bonding to fully exploit the additive manufacturing capability and to create large and cost-effective 3 D printed parts.

Details

Rapid Prototyping Journal, vol. 28 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 July 2012

Mariana D. Banea, Lucas F.M. da Silva and Raul D.S.G. Campilho

The purpose of this paper is to provide an insight into the techniques which are used and developed for adhesive bulk and joint specimens manufacturing.

Abstract

Purpose

The purpose of this paper is to provide an insight into the techniques which are used and developed for adhesive bulk and joint specimens manufacturing.

Design/methodology/approach

After a short introduction, the paper discusses various techniques for adhesive bulk and joint specimens manufacturing and highlights their advantages and limitations. A number of examples in the form of different bulk and joint specimens of different types of adhesives are used to show the methods for determining the adhesive's mechanical properties needed for design in adhesive technology. In order to predict the adhesive joint strength, the stress distribution and a suitable failure criterion are essential. If a continuum mechanics approach is used, the availability of the stress‐strain curve of the adhesive is sufficient (the bulk tensile test or the TAST test is used). For fracture mechanics‐based design, mode I and mode II toughness is needed (DCB and ENF tests are used). Finally, single lap joints (SLJs) are used to assess the adhesive's performance in a joint.

Findings

Before an adhesive can be specified for an application, screening tests should be conducted in order to compare and evaluate the various adhesion parameters. Properties of adhesives can vary greatly and an appropriate selection is essential for a proper joint design. Thus, to determine the stresses and strains in adhesive joints in a variety of configurations, it is necessary to characterize the adhesive behaviour in order to know its mechanical properties. A great variety of test geometries and specimens are used to obtain adhesive properties. However, for manufacturing of adhesive bulk specimens and joints necessary for use in these tests, properly, moulds should be designed.

Originality/value

The paper summarises the main methods of preparing adhesive bulk and joint specimens and the test methods for determining the mechanical properties needed for design in adhesive technology. Emphasis is given to the preparation of specimens of suitable quality for mechanical property determination and the moulds designed for this purpose.

Details

Assembly Automation, vol. 32 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 June 2003

Ken Young and Ian Pearson

Building automobile bodies from lightweight materials using space‐frame construction techniques is increasingly popular because of exhaust emission legislation. One proposed…

Abstract

Building automobile bodies from lightweight materials using space‐frame construction techniques is increasingly popular because of exhaust emission legislation. One proposed method of achieving this is by using plug and socket joints, which are injected with adhesive after assembly. A method for controlling this process, irrespective of component tolerances, is proposed here. A test rig representing a plug and socket joint was injected with the adhesive and a method for successfully filling the butt‐jointed end of the joint found. The addition of a restriction to the joint's open end gave a method of filling the cavity without creating any air gaps. The use of neoprene O‐ring seals for creating the restriction was investigated. The pressure of the adhesive at the joint inlet (gate) was recorded (data logger), and an analysis of this has been used to determine the point when adhesive injection can be arrested and the joint correctly filled.

Details

Assembly Automation, vol. 23 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 2000