Search results

1 – 10 of over 11000
Article
Publication date: 28 March 2008

Damir Godec, Mladen Šercer and Maja Rujnić‐Sokele

This paper aims to emphasize compared experimental analysis of influence of hybrid and classic moulds on the properties of moulded parts and the processing parameters. Such…

Abstract

Purpose

This paper aims to emphasize compared experimental analysis of influence of hybrid and classic moulds on the properties of moulded parts and the processing parameters. Such analysis enables optimization of processing parameters in case of the hybrid mould.

Design/methodology/approach

Representative moulded part and appropriate hybrid and classic moulds have been designed and manufactured. The experimental work contains a screening design and the main central composite design for analysing the performance of both moulds and moulded parts properties. In case of hybrid mould a numerical optimization of processing parameters was used.

Findings

It was found that hybrid moulds can be successfully applied for production of thin‐wall moulded parts with some limitations. The compressibility of prototype mould inserts was higher compared to classic inserts. The differences in thermal properties of mould inserts materials result in different moulded part properties and mould cavity wall temperature fields. These differences can be reduced by optimizing the processing parameters.

Practical implications

RT technologies can be usefully applied for fast production of moulds for injection moulding. The potential user of hybrid moulds should be aware of the influence of prototype inserts on the moulded part properties. Guidelines for optimization can be used for fast achieving of parameters from optimal processing window.

Originality/value

This paper shows a detailed analysis of influence of hybrid and classic moulds on the thermoplastic moulded part properties. Some of these influences are explained in detail, which was not found in the related papers. In this paper, a further step was made by optimizing the processing parameters in case of hybrid mould.

Details

Rapid Prototyping Journal, vol. 14 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 June 2013

Khurram Altaf, Ahmad Majdi Abdul Rani and Vijay R. Raghavan

The purpose of this paper is to present a technique of fabricating profiled conformal cooling channels (PCCC) in an aluminium filled epoxy mould using rapid prototyping (RP) and…

1118

Abstract

Purpose

The purpose of this paper is to present a technique of fabricating profiled conformal cooling channels (PCCC) in an aluminium filled epoxy mould using rapid prototyping (RP) and rapid tooling (RT) techniques and to compare the cooling times for the moulds with circular and profiled channels experimentally. The cooling channels in injection mould tools have a circular cross section. In a PCCC, the cross sectional shape is so designed that the flat face surface of the channel facing the cavity follows the profile of the cavity. These types of channels can be manufactured through RP and RT techniques.

Design/methodology/approach

A part to be moulded was designed and modelled. Two moulds were then designed with the part cavity, one having a circular channel and the second with a profiled channel, both having the same cross sectional area for coolant flow. The channel patterns were designed with supports according to their position regarding height and distance from the cavity as designed earlier. Both channels have the same distance from the cavity wall. RP patterns were produced for both channels and part using the Thermojet 3D printer. The cooling channel and the moulded part patterns were then assembled as designed in the moulds. Moulding frames were fabricated with aluminium plates and the pattern was placed in the frames. Epoxy was poured on the pattern and then cured. The moulded part and the channel patterns embedded inside epoxy were melted out during the final curing cycle, leaving behind the circular‐ and profiled‐cooling channels in the moulds. For the cooling time measurement, injection moulding was done with moulds with circular and profiled channels. Moulded part temperature will be recorded by embedding thermocouples within the mould cavities.

Findings

A technique for the manufacture of cooling channels of different profiles in epoxy moulds was presented. Experimental analysis for temperature measurement for the moulded part with injection moulding process showed that PCCC mould has less cooling time then mould with circular channels.

Research limitations/implications

The technique presented is based on the metal‐filled epoxy materials used in RT and was obtained using a specific test part. Epoxy tooling can be a useful alternative of metallic mould to produce injection mould tools. A limitation for the epoxy moulds is that they have a limited life as compared with metallic moulds.

Originality/value

This is a new technique of manufacturing moulds with cooling channels using RP/RT techniques. Moulds with different channel cross sections can be manufactured using this technique.

Open Access
Article
Publication date: 10 May 2021

Akinloluwa Samuel Babalola

Values of parameters such as temperature, humidity, number of plastic products and the location of plastic injection moulds are required to determine the efficiency of plastic…

1008

Abstract

Purpose

Values of parameters such as temperature, humidity, number of plastic products and the location of plastic injection moulds are required to determine the efficiency of plastic injection moulds with a view to improving the quality of the outputs. This article determined the appropriate sensors for the measurement of these essential parameters in the most suitable form of representation of the data to aid a proficient analysis of the data.

Design/methodology/approach

The outputs of these sensors were obtained by connecting the sensors to the general-purpose input/output (GPIO) pins of a Raspberry Pi and writing a Python programme for the connected GPIO pins. The values of the outputs of these sensors were represented in a graphical form. The connection of the Raspberry Pi and the sensors were done with a full-sized breadboard and jumper wires. A computer-aided design (CAD) of the connections was produced using Fritzing software.

Findings

The appropriate sensors determined are MLX90614 infrared thermometer sensor, DHT11 humidity sensor, pixy2 vision sensor and Neo-6m GPS sensor. This study proposed that the sensors analytic system be applied on an industrial plastic injection mould to measure and display the various parameters of the injection moulds for the purpose of understanding and improving the performance of the injection mould

Originality/value

An electronic system that provides the continuous values of essential parameters of a plastic injection mould in operation.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 21 August 2007

F.T. Seyidov, Y. Mansoori and J. Taghi Nezhad

This paper seeks to address the preparation of new compositions of hydrophobicizing liquids as release agent for press moulds in the production of plastic articles of all kinds of…

397

Abstract

Purpose

This paper seeks to address the preparation of new compositions of hydrophobicizing liquids as release agent for press moulds in the production of plastic articles of all kinds of polymers.

Design/methodology/approach

Mixtures of thermo‐stable polyethers (copolymer of ethylene oxide and propylene oxide) and polyols esters/mixed esters in the presence of phenothiazine as antioxidant were prepared and tested.

Findings

All compositions were tested and compared with silicone oil polymethylsiloxane‐100 (PMS‐100). The lubricant was manually applied on a hot surface (160‐190°C) of tray of press mould, without any change in the operating cycle. The finished products were easily removed from press mould, and showed higher durability. The release agent was also checked for production of polyethylene lids by automatic moulding at 170‐200°C, and 17 lids have been obtained on one application. This is quite a good result compared with silicone oil PMS‐100, which produced only four to five lids.

Research limitations/implications

Because of complexity of obtained mixture, it was impossible to study the structure and composition of the obtained products by modern spectroscopy techniques.

Practical implications

In order to obtain compositions of optimum properties a lot of mixtures were prepared and tested. Only compositions which showed suitable properties were reported.

Originality/value

This paper provides detailed information on the experimental preparation of 37 compositions for hydrophobicizing mould release agents. Testing of different obtained hydrophobicizing liquids showed positive results, in production of plastic household articles, over silicone oil PMS‐100. The finished products were easily removed from press mould and prepared hydrophobicizing liquids showed higher durability than silicone oil PMS‐100. The obtained compositions are also favored from the point of view of commercial availability and ecology and can be considered as replacements for PMS‐100 release agent.

Details

Industrial Lubrication and Tribology, vol. 59 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 September 2022

Wei Li, Xiaoshan Lin and Yi Min Xie

Optimised concrete components are often of complex geometries, which are difficult and costly to cast using traditional formworks. This paper aims to propose an innovative…

Abstract

Purpose

Optimised concrete components are often of complex geometries, which are difficult and costly to cast using traditional formworks. This paper aims to propose an innovative formwork system for optimised concrete casting, which is eco-friendly, recyclable and economical.

Design/methodology/approach

In the proposed formwork system, ice is used as mould pattern to create desired geometry for concrete member, then sand mould is fabricated based on the ice pattern. A mix design and a mixing procedure for the proposed sand mould are developed, and compression tests are also performed to ensure sufficient strength of the sand mould. Furthermore, surface preparation of the sand mould is investigated for easy demoulding and for achieving good concrete surface quality. Additionally, recyclability of the proposed sand mould is tested.

Findings

The proposed mix design and mixing procedure can provide sufficient strength for sand mould in concrete casting. The finished components exhibit smooth surfaces and match designed geometries, and the proposed sand mould can be fully recycled with satisfactory strength.

Originality/value

To the best of the authors’ knowledge, this is the first study that combines ice pattern and sand mould to create recyclable formwork system for concrete casting. The new techniques developed in this research has great potential to be applied in the fabrication of large-scale concrete structures with complex geometries.

Article
Publication date: 23 March 2023

Mert Gülçür, Kevin Couling, Vannessa Goodship, Jérôme Charmet and Gregory J. Gibbons

The purpose of this study is to demonstrate and characterise a soft-tooled micro-injection moulding process through in-line measurements and surface metrology using a…

Abstract

Purpose

The purpose of this study is to demonstrate and characterise a soft-tooled micro-injection moulding process through in-line measurements and surface metrology using a data-intensive approach.

Design/methodology/approach

A soft tool for a demonstrator product that mimics the main features of miniature components in medical devices and microsystem components has been designed and fabricated using material jetting technique. The soft tool was then integrated into a mould assembly on the micro-injection moulding machine, and mouldings were made. Sensor and data acquisition devices including thermal imaging and injection pressure sensing have been set up to collect data for each of the prototypes. Off-line dimensional characterisation of the parts and the soft tool have also been carried out to quantify the prototype quality and dimensional changes on the soft tool after the manufacturing cycles.

Findings

The data collection and analysis methods presented here enable the evaluation of the quality of the moulded parts in real-time from in-line measurements. Importantly, it is demonstrated that soft-tool surface temperature difference values can be used as reliable indicators for moulding quality. Reduction in the total volume of the soft-tool moulding cavity was detected and quantified up to 100 cycles. Data collected from in-line monitoring was also used for filling assessment of the soft-tool moulding cavity, providing about 90% accuracy in filling prediction with relatively modest sensors and monitoring technologies.

Originality/value

This work presents a data-intensive approach for the characterisation of soft-tooled micro-injection moulding processes for the first time. The overall results of this study show that the product-focussed data-rich approach presented here proved to be an essential and useful way of exploiting additive manufacturing technologies for soft-tooled rapid prototyping and new product introduction.

Abstract

Purpose

The purpose of this study is to analyse the problem of high binder content in sand mould and to solve it. Meanwhile, to increase build speed, especially for heavy casting’s sand mould with a high value in layer height, such as 2 mm in construction instead of the industry standard of 0.3 mm, line forming for three-dimensional (3D) sand mould printing is researched.

Design/methodology/approach

Brief introduction of 3D sand mould printing and key issues are given first. Then, this paper quantitatively analyses binder content in sand mould. Finally, to acquire sand mould with appropriate binder content and high build speed, line forming combining traditional furan no-bake sand manufacture technique is researched, as well as relevant feasible schemes and current progress.

Findings

The study shows that compared with traditional technique, binder content in sand mould produced by available 3D printing technique is too high, bad for sand mould’s properties and quality of castings, while line forming brings guaranteed binder content and improved build speed.

Research limitations/implications

More experiments are needed to demonstrate quantitative analysis of binder content and to obtain flowability of moist sand, detailed structure design of nozzle and practical build speed, as well as methods of circulation of materials considering solidification time.

Practical implications

Line forming with higher build speed and suitable binder content means excellent properties of sand mould and castings as well, bringing obvious implication for moulds industries and manufacturing industry.

Originality/value

This new method could increase build speed and meanwhile guarantee binder content. Thus, its application prospect is promising.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2018

Donghua Zhao, Weizhong Guo, Baibing Zhang and Feng Gao

The purpose of this paper is to review available technologies, analyse their features, propose a new approach of 3D sand mould printing based on line forming, introduce the…

Abstract

Purpose

The purpose of this paper is to review available technologies, analyse their features, propose a new approach of 3D sand mould printing based on line forming, introduce the manufacturing principle and show advantages of this approach, especially for larger parts with large Z steps in the build, such as 2 mm stepwise.

Design/methodology/approach

This paper introduces 3D sand mould printing, compares and analyses technological process and existing fabrication approaches among available technologies first. Then, a new approach of 3D sand mould printing is proposed to improve build speed. In addition, the proposed system will be analysed or benchmarked against existing systems.

Findings

A new approach based on line forming of sand mould printing is put forward by reviewing and analysing available technologies, to improve build speed from the aspect of basic moulding movement instead of optimization of moulding methods and process parameters. The theoretical calculation and analysis shows that build speed can be improved greatly, and it is more suitable for the manufacture of large-scale casting’s sand mould when considering dimensional accuracy and printing error, as well as uniformity of each layer.

Research limitations/implications

The specific implement scheme of line forming and nozzle’s specific structure of this new approach need further study.

Practical implications

Much higher build speed of 3D sand mould printing with new approach brings evident implication for moulds companies and manufacturing industry, having a far-reaching influence on the development of national economy.

Originality/value

This paper reviews available technologies and presents a new approach of 3D sand mould printing for the first time. Analysis of the new approach shows that this new method of sand mould printing can boost build speed greatly. So, its application prospect is great.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 August 2019

Joel Vasco, F.M. Barreiros, Andreia Nabais and Nilza Reis

The purpose of this study is to compare the overall performance of the injection moulding process by using metallic inserts produced by both conventional technologies and…

Abstract

Purpose

The purpose of this study is to compare the overall performance of the injection moulding process by using metallic inserts produced by both conventional technologies and selective laser melting (SLM).

Design/methodology/approach

A systematic methodology is proposed for prior evaluation of the effectiveness of conformal cooling channels to reduce cycle time and/or to reduce the scrap rate.

Findings

The mould was reengineered considering the SLM process and manufactured. Injection trials were carried out to validate expectations provided by injection simulations, which resulted on good quality parts and a significant decrease on cooling time, and, consequently, on the overall cycle time. The minimisation of scrap provided energy savings and time-to-market reduction.

Research limitations/implications

The initial costs for AM tools still pose some doubts on decision-makers. The challenge of this study is to implement the methodology on a small-scale production and still ensure that benefits are achieved.

Practical implications

The case study selected for this research work is based on a parking sensor housing, which is a plastic part assembled on the vehicle’s front and rear bumpers, therefore, with aesthetics concerns. The part produced with the conventional mould exhibits surface defects that, to be minimised (not eliminated), require a longer packing time to diminish the sink marks.

Social implications

The economic impact of the use of SLM is relevant despite the low batch size for the case study presented. Energy savings are achieved due to scrap reduction and shorter cycle time.

Originality/value

The systematic methodology proposed for prior evaluation of the advantages of conformal cooling is possible to be applied both on small scale and high production series.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 March 2015

Roberto Raffaeli, Claudio Favi and Ferruccio Mandorli

High pressure die casting is a widely used industrial process to manufacture complex-shaped products in light alloys. Virtual prototyping techniques, especially numeric-based…

Abstract

Purpose

High pressure die casting is a widely used industrial process to manufacture complex-shaped products in light alloys. Virtual prototyping techniques, especially numeric-based simulations of the casting process, allow the die filling process to be evaluated and help faster optimization of the gating system, which is the most critical element of the mould. The purpose of this paper is to present a four step approach to design optimal moulds taking advantage of the simulation tools.

Design/methodology/approach

No formalized method to design an optimal gating system is available yet and the majority of the studies aim to optimize existing geometries or to choose from alternative solutions. Rather than optimizing the geometries of predefined designs by running attempt trials, the proposed approach defines a procedure to position cavities, gating systems and, finally, to determine the whole mould geometry.

Findings

The approach is demonstrated through three different industrial applications. The design of a six-cavity mould for gas cooking burners is reported at first. Then, two test cases, a cup and a radiator, are reported for showing different arrangements of the gating system. The reached quality of the mould design has been assessed using metallographic analyses of the casts.

Originality/value

The design of a mould is strictly correlated to its product and mainly based on a trial-and-error approach. Numerical simulations offer a powerful and not expensive way to study the effectiveness of different die designs and filling processes. The paper proposes a structured approach for the definition of the gating system. It ultimately leads to improvements in both product quality and process productivity, including more effective control of the die filling and die thermal performance.

Details

Engineering Computations, vol. 32 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 11000