Search results

1 – 10 of over 1000
Article
Publication date: 19 July 2019

Bingqi Li, Zhenyu Zhang, Xiaogang Wang and Xiaonan Liu

The behavior of joints has a significant effect on the stability of water conveyance tunnel. The purpose of this paper is to study the contact and friction at the joint of the…

Abstract

Purpose

The behavior of joints has a significant effect on the stability of water conveyance tunnel. The purpose of this paper is to study the contact and friction at the joint of the tunneling segment lining and establish its contact friction model. At the same time, the stress and deformation characteristics at the joint of the segment under hydrostatic load are analyzed.

Design/methodology/approach

In this study, the contact and friction in a bolted joint are examined using shear testing. The feasibility of the proposed model is verified by a numerical simulation of tests and a theoretical analysis. Accordingly, the effect of joints on the lining is explored under internal hydrostatic loading.

Findings

The results show that the openings of tunnel segments in joints gradually expand from the positions of the inner and outer edges to the location of the bolt. Moreover, the stress concentration zone is formed at the bolt. Under hydraulic loading, the opening displacement at the joint increases as the water pressure increases; nevertheless, it does not exceed engineering requirements. When the water pressure of the tunnel lining joint reaches 0.5 MPa, the opening of the joint slowly increases. When the water pressure exceeds 0.7 MPa, the opening of the joint rapidly and significantly increases.

Originality/value

Contact and friction in a bolted joint were examined using shear testing. A cohesive zone model of bolted joints was proposed based on test results. The influence of joint behavior on the stability of water conveyance tunnel was studied.

Details

Engineering Computations, vol. 36 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 August 2007

Gordon Geißler, Michael Kaliske, Michael Nase and Wolfgang Grellmann

The purpose of this paper is to evaluate current simulation capabilities for thin film delamination on the basis of real test data as well as a contribution to its extension in…

1505

Abstract

Purpose

The purpose of this paper is to evaluate current simulation capabilities for thin film delamination on the basis of real test data as well as a contribution to its extension in order to partly substitute experimental investigations.

Design/methodology/approach

The proposed model consists of a formulation that describes the behaviour of the bulk material and an approach that introduces the film's delamination capability. An implicit finite element framework with a cohesive zone implementation is used and described in detail. The numerical results on the basis of the a priori identified material parameters are related to the experimental work. In order to capture the obvious peel speed dependency of these delamination processes, a viscoelastic cohesive formulation is introduced and compared with a pure separation rate dependent cohesive material in the second part of this contribution.

Findings

The performed numerical simulations show a good approximation of the experimental peel process. The extension in order to take time‐dependent effects into account is required for the simulation of such problems. In contrast with the pure rate‐dependent model, the presented consistent formulation of the cohesive part is able to cover the whole range of observed material phenomena.

Research limitations/implications

Owing to the absence of suitable experimental single mode investigations of the sealed layer, the used cohesive material parameters are identified in relation to the pre‐existing experimental results. Furthermore, the resultant peel force has a constant value due to the assumed homogeneous cohesive material and therefore gives only a mean approximation of the experimental values at this stage of the investigation.

Originality/value

The numerical representation of such a thin film delamination process in relation to real experimental results shows the additional capabilities and the usability of the implicit finite element method with a cohesive zone implementation in a clear and illustrative way. The first proposed cohesive extension based on a rheological model shows the capability to cover the full range of time‐dependent interface layer behaviour.

Details

Engineering Computations, vol. 24 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 August 2014

A. Pirondi, G. Giuliese and F. Moroni

In this work, the cohesive zone model (CZM) developed by some of the authors to simulate the propagation of fatigue defects in two dimensions is extended in order to simulate the…

Abstract

Purpose

In this work, the cohesive zone model (CZM) developed by some of the authors to simulate the propagation of fatigue defects in two dimensions is extended in order to simulate the propagation of defects in 3D. The paper aims to discuss this issue.

Design/methodology/approach

The procedure has been implemented in the finite element (FE) solver (Abaqus) by programming the appropriate software-embedded subroutines. Part of the procedure is devoted to the calculation of the rate of energy release per unit, G, necessary to know the growth of the defect.

Findings

The model was tested on different joint geometries, with different load conditions (pure mode I, mode II pure, mixed mode I/II) and the results of the analysis were compared with analytical solutions or virtual crack closure technique (VCCT).

Originality/value

The possibility to simulate the growth of a crack without any re-meshing requirements and the relatively easy possibility to manipulate the constitutive law of the cohesive elements makes the CZM attractive also for the fatigue crack growth simulation. However, differently from VCCT, three-dimensional fatigue de-bonding/delamination with CZM is not yet state-of-art in FE softwares.

Details

International Journal of Structural Integrity, vol. 5 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 August 2021

Felix Töller, Stefan Löhnert and Peter Wriggers

In certain cases, traction–separation laws do not reflect the behaviour sufficiently so that thin volumetric elements, Internal Thickness Extrapolation formulations, bulk material…

Abstract

Purpose

In certain cases, traction–separation laws do not reflect the behaviour sufficiently so that thin volumetric elements, Internal Thickness Extrapolation formulations, bulk material projections or various other approaches are applied. All of them have disadvantages in the formulation or practical application.

Design/methodology/approach

Damage within thin layers is often modelled using at cohesive zone elements (CZE). The constitutive behaviour of cohesive zone elements is usually described by traction–seperation laws (TSLs) that consider the (traction separation) relation in normal opening and tangential shearing direction. Here, the deformation (separation) as well as the reaction (traction) are vectorial quantities.

Findings

In this contribution, a CZE is presented that includes damage from membrane modes.

Originality/value

Membrane mode-related damaging effects that can be seen in physical tests that could not be simulated with standard CZEs are well captured by membrane mode–enhanced cohesive zone elements.

Article
Publication date: 10 May 2013

Peter Filipp Fuchs, Klaus Fellner and Gerald Pinter

The purpose of this paper is to analyse, in a finite element simulation, the failure of a multilayer printed circuit board (PCB), exposed to an impact load, to better evaluate the…

Abstract

Purpose

The purpose of this paper is to analyse, in a finite element simulation, the failure of a multilayer printed circuit board (PCB), exposed to an impact load, to better evaluate the reliability and lifetime. Thereby the focus was set on failures in the outermost epoxy layer.

Design/methodology/approach

The fracture behaviour of the affected material was characterized. The parameters of a cohesive zone law were determined by performing a double cantilever beam test and a corresponding simulation. The cohesive zone law was used in an enriched finite element local simulation model to predict the crack initiation and crack propagation. Using the determined location of the initial crack, the energy release rate at the crack tip was calculated, allowing an evaluation of the local loading situation.

Findings

A good concurrence between the simulated and the experimentally observed failure pattern was observed. Calculating the energy release rate of two example PCBs, the significant influence of the chosen type on the local failure behaviour was proven.

Originality/value

The work presented in this paper allows for the simulation and evaluation of failure in the outermost epoxy layers of printed circuit boards due to impact loads.

Article
Publication date: 12 July 2013

Kyungmok Kim, Jean Geringer and Bernard Forest

The purpose of this paper is to describe finite element modelling for fracture and fatigue behaviour of zirconia toughened alumina microstructures.

Abstract

Purpose

The purpose of this paper is to describe finite element modelling for fracture and fatigue behaviour of zirconia toughened alumina microstructures.

Design/methodology/approach

A two‐dimensional finite element model is developed with an actual Al2O3‐10 vol% ZrO2 microstructure. A bilinear, time‐independent cohesive zone law is implemented for describing fracture behaviour of grain boundaries. Simulation conditions are similar to those found at contact between a head and a cup of hip prosthesis. Residual stresses arisen from the mismatch of thermal coefficient between grains are determined. Then, effects of a micro‐void and contact stress magnitude are investigated with models containing residual stresses. For the purpose of simulating fatigue behaviour, cyclic loadings are applied to the models.

Findings

Results show that crack density is gradually increased with increasing magnitude of contact stress or number of fatigue cycles. It is also identified that a micro‐void brings about the increase of crack density rate.

Social implications

This paper is the first step for predicting the lifetime of ceramic implants. The social implications would appear in the next few years about health issues.

Originality/value

This proposed finite element method allows describing fracture and fatigue behaviours of alumina‐zirconia microstructures for hip prosthesis, provided that a microstructure image is available.

Article
Publication date: 1 February 2001

T.I. Zohdi and P. Wriggers

A model for the decohesion of aggregates of suspended particulate material in a binding matrix is developed. In the model cohesive zones which envelop each particle individually…

Abstract

A model for the decohesion of aggregates of suspended particulate material in a binding matrix is developed. In the model cohesive zones which envelop each particle individually are introduced at the particulate/binder interface. During progressive loading, the deterioration of the cohesive zones is initiated if constraints placed on the microstress fields are violated. In order for the material behavior to be energetically admissible, the deterioration of the material at a point is in the form of a reduction of the elasticity tensor’s eigenvalues at that point. The material within the cohesive zones deteriorates until the constraints are met. In order to isolate and study the effects of interfacial deterioration, outside of the cohesive zones, the material is unaltered. Mathematical properties of the model, as well as physical restrictions, are discussed. Numerical simulations are performed employing the finite element method to illustrate the approach in three‐dimensional applications.

Details

Engineering Computations, vol. 18 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 August 2023

Hong Yuan, Jun Han, Huaqiang Lu, Junhui Li and Lan Zeng

Due to its inexpensive production costs, low stress concentration and maintenance-friendliness, the adhesive bonded pipe joint is frequently utilized for pipe connection. However…

Abstract

Purpose

Due to its inexpensive production costs, low stress concentration and maintenance-friendliness, the adhesive bonded pipe joint is frequently utilized for pipe connection. However, further theoretical analysis is needed to understand the debonding failure mechanism of such bonded pipe joints under axial tension.

Design/methodology/approach

In this study, based on the bi-linear cohesive zone model, the integrated closed-form solutions were derived by considering the axial stiffness ratio and failure stage to determine the relative interfacial slip, interfacial shear stress and relationship of tension–displacement in the bonded pipe joint.

Findings

Additionally, solutions for the critical bonded length and the ultimate load capacity were put forth. Besides, the numerical study was conducted to verify the theoretical solutions regarding the load–displacement relationship. The interfacial shear stress distribution at different failure stages was presented to understand the interfacial shear stress transmission and debonding process. The effect of bonded length on the ultimate load and ductility of pipe joints was also discussed.

Originality/value

The findings in this study can give a reference for the design of bonded pipe joints in their actual engineering applications.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 2022

Yongliang Wang and Xin Zhang

Hydrofracturing technology has been widely used in tight oil and gas reservoir exploitation, and the fracture network formed by fracturing is crucial to determining the resources…

Abstract

Purpose

Hydrofracturing technology has been widely used in tight oil and gas reservoir exploitation, and the fracture network formed by fracturing is crucial to determining the resources recovery rate. Due to the complexity of fracture network induced by the random morphology and type of fluid-driven fractures, controlling and optimising its mechanisms is challenging. This paper aims to study the types of multiscale mode I/II fractures, the fluid-driven propagation of multiscale tensile and shear fractures need to be studied.

Design/methodology/approach

A dual bilinear cohesive zone model (CZM) based on energy evolution was introduced to detect the initiation and propagation of fluid-driven tensile and shear fractures. The model overcomes the limitations of classical linear fracture mechanics, such as the stress singularity at the fracture tip, and considers the important role of fracture surface behaviour in the shear activation. The bilinear cohesive criterion based on the energy evolution criterion can reflect the formation mechanism of complex fracture networks objectively and accurately. Considering the hydro-mechanical (HM) coupling and leak-off effects, the combined finite element-discrete element-finite volume approach was introduced and implemented successfully, and the results showed that the models considering HM coupling and leak-off effects could form a more complex fracture network. The multiscale (laboratory- and engineering-scale) Mode I/II fractures can be simulated in hydrofracturing process.

Findings

Based on the proposed method, the accuracy and applicability of the algorithm were verified by comparing the analytical solution of KGD and PKN models. The effects of different in situ stresses and flow rates on the dynamic propagation of hydraulic fractures at laboratory and engineering scales were investigated. when the ratio of in situ stress is small, the fracture propagation direction is not affected, and the fracture morphology is a cross-type fracture. When the ratio of in situ stress is relatively large, the propagation direction of the fracture is affected by the maximum in situ stress, and it is more inclined to propagate along the direction of the maximum in situ stress, forming double wing-type fractures. Hydrofracturing tensile and shear fractures were identified, and the distribution and number of each type were obtained. There are fewer hydraulic shear fractures than tensile fractures, and shear fractures appear in the initial stage of fracture propagation and then propagate and distribute around the perforation.

Originality/value

The proposed dual bilinear CZM is effective for simulating the types of Mode I/II fractures and seizing the fluid-driven propagation of multiscale tensile and shear fractures. Practical fracturing process involves the multi-type and multiscale fluid-driven fracture propagation. This study introduces general fluid-driven fracture propagation, which can be extended to the fracture propagation analysis of potential fluid fracturing, such as other liquids or supercritical gases.

Article
Publication date: 4 July 2016

Wei Zhou, Wei Yuan, Gang Ma and Xiao-Lin Chang

The purpose of this paper is to propose a novel combined finite-discrete element method (FDEM), based on the cohesive zone model, for simulating rockslide problems at the…

Abstract

Purpose

The purpose of this paper is to propose a novel combined finite-discrete element method (FDEM), based on the cohesive zone model, for simulating rockslide problems at the laboratory scale.

Design/methodology/approach

The combined FDEM is realized using ABAQUS/Explicit. The rock mass is represented as a collection of elastic bulk elements glued by cohesive elements with zero thickness. To reproduce the tensile and shear micro-fractures in rock material, the Mohr-Coulomb model with tension cut-off is employed as the damage initiation criterion of cohesive elements. Three simulated laboratory tests are considered to verify the capability of combined FDEM in reproducing the mechanical behavior of rock masses. Three slope models with different joint inclinations are taken to illustrate the application of the combined FDEM to rockslide simulation.

Findings

The results show that the joint inclination is an important factor for inducing the progressive failure behavior. With a low joint inclination, the slope failure process is observed to be a collapse mode. As the joint inclination becomes higher, the failure mode changes to sliding and the steady time of rock blocks is shortened. Moreover, the runout distance and post-failure slope angle decrease as the joint inclination increases.

Originality/value

These studies indicate that the combined FDEM performed within ABAQUS can simulate slope stability problems for research purposes and is useful for studying the slope failure mechanism comprehensively.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000