Search results

1 – 10 of over 13000
Article
Publication date: 28 June 2013

M. Majeed and Indra Narayan Kar

The purpose of this paper is to estimate aerodynamic parameters accurately from flight data in the presence of unknown noise characteristics.

Abstract

Purpose

The purpose of this paper is to estimate aerodynamic parameters accurately from flight data in the presence of unknown noise characteristics.

Design/methodology/approach

The introduced adaptive filter scheme is composed of two parallel UKFs. At every time‐step, the master UKF estimates the states and parameters using the noise covariance obtained by the slave UKF, while the slave UKF estimates the noise covariance using the innovations generated by the master UKF. This real time innovation‐based adaptive unscented Kalman filter (UKF) is used to estimate aerodynamic parameters of aircraft in uncertain environment where noise characteristics are drastically changing.

Findings

The investigations are initially made on simulated flight data with moderate to high level of process noise and it is shown that all the aerodynamic parameter estimates are accurate. Results are analyzed based on Monte Carlo simulation with 4000 realizations. The efficacy of adaptive UKF in comparison with the other standard Kalman filters on the estimation of accurate flight stability and control derivatives from flight test data in the presence of noise, are also evaluated. It is found that adaptive UKF successfully attains better aerodynamic parameter estimation under the same condition of process noise intensity changes.

Research limitations/implications

The presence of process noise complicates parameter estimation severely. Since the non‐measurable process noise makes the system stochastic, consequently, it requires a suitable state estimator to propagate the states for online estimation of aircraft aerodynamic parameters from flight data.

Originality/value

This is the first paper highlighting the process noise intensity change on real time estimation of flight stability and control parameters using adaptive unscented Kalman filter.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 4 July 2016

José I.V. Sena, Cedric Lequesne, L Duchene, Anne-Marie Habraken, Robertt A.F. Valente and Ricardo J Alves de Sousa

Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between…

Abstract

Purpose

Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between the tool and the sheet surface, as well as the nonlinear material behaviour combined with non-monotonic strain paths. The purpose of this paper is to propose an adaptive remeshing technique implemented in the in-house implicit finite element code LAGAMINE, to reduce the simulation time. This remeshing technique automatically refines only a portion of the sheet mesh in vicinity of the tool, therefore following the tool motion. As a result, refined meshes are avoided and consequently the total CPU time can be drastically reduced.

Design/methodology/approach

SPIF is a dieless manufacturing process in which a sheet is deformed by using a tool with a spherical tip. This dieless feature makes the process appropriate for rapid-prototyping and allows for an innovative possibility to reduce overall costs for small batches, since the process can be performed in a rapid and economic way without expensive tooling. As a consequence, research interest related to SPIF process has been growing over the last years.

Findings

In this work, the proposed automatic refinement technique is applied within a reduced enhanced solid-shell framework to further improve numerical efficiency. In this sense, the use of a hexahedral finite element allows the possibility to use general 3D constitutive laws. Additionally, a direct consideration of thickness variations, double-sided contact conditions and evaluation of all components of the stress field are available with solid-shell and not with shell elements. Additionally, validations by means of benchmarks are carried out, with comparisons against experimental results.

Originality/value

It is worth noting that no previous work has been carried out using remeshing strategies combined with hexahedral elements in order to improve the computational efficiency resorting to an implicit scheme, which makes this work innovative. Finally, it has been shown that it is possible to perform accurate and efficient finite element simulations of SPIF process, resorting to implicit analysis and continuum elements. This is definitively a step-forward on the state-of-art in this field.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 February 2022

Chang Zhao, Li Zhou and Tao Qiu

Adaptive bump inlet can adaptively change the shape of inlet bump surface according to the flight speed of aircraft, ensuring that the inlet has good inlet-engine match…

Abstract

Purpose

Adaptive bump inlet can adaptively change the shape of inlet bump surface according to the flight speed of aircraft, ensuring that the inlet has good inlet-engine match performance in a wide speed range. This paper aims to use a composite flexible skin reinforced by shape memory alloy (SMA) fiber as the deformable structure at bump surface to realize the adjustable bump surface of adaptive bump inlet.

Design/methodology/approach

According to the deformation and load-bearing requirements of adaptive bump, SMA is applied to the design of adaptive bump inlet due to its characteristic of super-elasticity. A kind of SMA fiber is studied. A composite flexible skin reinforced by SMA is proposed, and its mechanical properties are analyzed. On this basis, an adaptive bump inlet is designed in which the composite flexible skin reinforced by SMA is used as bump surface, and the shape of the bump surface is adjusted by way of pressuring. The design scheme and specific parameters of the adaptive bump are given.

Findings

An adaptive bump surface that meets the design requirements of the inlet is designed, which can effectively adjust the inlet throat area with a throat area change rate of 20%.

Originality/value

An adaptive bump inlet with composite flexible skin as a deformable structure at bump surface is designed, and SMA is applied as the reinforcing fiber.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 June 2016

S. Mohammad Hashemian, Rassoul Noorossana, Ali Keyvandarian and Maryam Shekary A.

The purpose of this paper is to compare the performances of np-VP control chart with estimated parameter to the np-VP control chart with known parameter using average…

Abstract

Purpose

The purpose of this paper is to compare the performances of np-VP control chart with estimated parameter to the np-VP control chart with known parameter using average time-to-signal (ATS), standard deviation of the time-to-signal (SDTS), and average number of observations to signal (ANOS) as performance measures.

Design/methodology/approach

The approach used in this study is probabilistic in which the expected values of performance measures are calculated using probabilities of different estimators used to estimate process parameter.

Findings

Numerical results indicate different performances for the np-VP control chart in known and estimated parameter cases. It is obvious that when process parameter is not known and is estimated using Phase I data, the chart does not perform as user expects. To tackle this issue, optimal Phase I estimation scenarios are recommended to obtain the best performance from the chart in the parameter estimation case in terms of performance measures.

Practical implications

This research adds to the body of knowledge in quality control of process monitoring systems. This paper may be of particular interest to practitioners of quality systems in factories where products are monitored to reduce the number of defectives and np chart parameter needs to be estimated.

Originality/value

The originality of this paper lies within the context in which an adaptive np control chart is studied and the process parameter unlike previous studies is assumed unknown. Although other types of control charts have been studied when process parameter is unknown but this is the first time that adaptive np chart performance with estimated process parameter is studied.

Details

International Journal of Quality & Reliability Management, vol. 33 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 23 March 2020

Chunhui Ma, Jie Yang, Lin Cheng and Li Ran

To improve the efficiency, accuracy and adaptivity of the parameter inversion analysis method of a rockfill dam, this study aims to establish an adaptive model based on a harmony…

Abstract

Purpose

To improve the efficiency, accuracy and adaptivity of the parameter inversion analysis method of a rockfill dam, this study aims to establish an adaptive model based on a harmony search algorithm (HS) and a mixed multi-output relevance vector machine (MMRVM).

Design/methodology/approach

By introducing the mixed kernel function, the MMRVM can accurately simulate the nonlinear relationship between the material parameters and dam settlement. Therefore, the finite element method with time consumption can be replaced by the MMRVM. Because of its excellent global search capability, the HS is used to optimize the kernel parameters of the MMRVM and the material parameters of a rockfill dam.

Findings

Because the parameters of the HS and the variation range of the MMRVM parameters are relatively fixed, the HS-MMRVM can imbue the inversion analysis with adaptivity; the number of observation points required and the robustness of the HS-MMRVM are analyzed. An application example involving a concrete-faced rockfill dam shows that the HS-MMRVM exhibits high accuracy and high speed in the parameter inversion analysis of static and creep constitutive models.

Practical implications

The applicability of the HS-MMRVM in hydraulic engineering is proved in this paper, which should further validate in inversion problems of other fields.

Originality/value

An adaptive inversion analysis model is established to avoid the parameters of traditional methods that need to be set by humans, which strongly affect the inversion analysis results. By introducing the mixed kernel function, the MMRVM can accurately simulate the nonlinear relationship between the material parameters and dam settlement. To reduce the data dimensions and verify the model’s robustness, the number of observation points required for inversion analysis and the acceptable degree of noise are determined. The confidence interval is built to monitor dam settlement and provide the foundation for dam monitoring and reservoir operation management.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 10 February 2023

Junting Lin, Mingjun Ni and Huadian Liang

This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under…

Abstract

Purpose

This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system, so as to improve the tracking efficiency and collision avoidance performance.

Design/methodology/approach

The mathematical model of information interaction between trains is established based on algebraic graph theory, so that the train can obtain the state information of adjacent trains, and then realize the distributed cooperative control of each train. In the controller design, the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon, so as to suppress the chattering of sliding mode control, and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.

Findings

The simulation results show that compared with proportional integral derivative (PID) control and ordinary sliding mode control, the control accuracy of the proposed algorithm in terms of speed is, respectively, improved by 25% and 75%. The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control, the error value tends to 0, and the operation trend tends to be consistent. Therefore, the control method can improve the control accuracy of the system and prove that it has strong immunity.

Originality/value

The algorithm can reduce the influence of external interference in the actual operating environment, realize efficient and stable tracking of trains, and ensure the safety of train control.

Details

Railway Sciences, vol. 2 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 8 March 2022

Rui Yu, Hua Zhou, Siyu Ma, Guifu Luo and Mingwei Lin

Hydrodynamic parameter estimation is significant for the velocity prediction of unmanned surface vehicles. Considering the field data’s uncertain nonlinearities (environmental…

Abstract

Purpose

Hydrodynamic parameter estimation is significant for the velocity prediction of unmanned surface vehicles. Considering the field data’s uncertain nonlinearities (environmental disturbances and measurement noise), this paper aims to propose a hybrid adaptive parameter estimation (HAPE) strategy.

Design/methodology/approach

First, a rough estimation of hydrodynamic parameters is used by the least squares method. Second, an improved adaptive parameter estimation algorithm is applied to compensate for the influence of uncertain nonlinearities and adjust the parameters within the rough range. Finally, it is proved that the calculated velocity asymptotically converges to the actual value during the parameter estimation procedure.

Findings

The numerical simulation and pool experiments are conducted in two scenarios of steady turning and sinusoidal thrust to verify the effectiveness of the proposed HAPE method. The results validate that the accuracy of the predicted velocity using the hydrodynamic model obtained by the HAPE strategy is better than the APE algorithm. In addition, the hydrodynamic parameters estimated with the sinusoidal thrust data are more applicable than the steady turning data.

Originality/value

This study proposes a HAPE strategy that considers the uncertain nonlinearities of the field data. This method provides a more accurate predicted velocity. Besides, as far as we know, it is the first time to analyze the influence of different test conditions on the accuracy of the predicted velocity.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 27 July 2022

Ruilin Yu, Yuxin Zhang, Luyao Wang and Xinyi Du

Time headway (THW) is an essential parameter in traffic safety and is used as a typical control variable by many vehicle control algorithms, especially in safety-critical ADAS and…

1252

Abstract

Purpose

Time headway (THW) is an essential parameter in traffic safety and is used as a typical control variable by many vehicle control algorithms, especially in safety-critical ADAS and automated driving systems. However, due to the randomness of human drivers, THW cannot be accurately represented, affecting scholars’ more profound research.

Design/methodology/approach

In this work, two data sets are used as the experimental data to calculate the goodness-of-fit of 18 commonly used distribution models of THW to select the best distribution model. Subsequently, the characteristic parameters of traffic flow are extracted from the data set, and three variables with higher importance are extracted using the random forest model. Combining the best distribution model parameters of the data set, this study obtained a distribution model with adaptive parameters, and its performance and applicability are verified.

Findings

In this work, two data sets are used as the experimental data to calculate the goodness-of-fit of 18 commonly used distribution models of THW to select the best distribution model. Subsequently, the characteristic parameters of traffic flow are extracted from the data set, and three variables with higher importance are extracted using the random forest model. Combining the best distribution model parameters of the data set, this study obtained a distribution model with adaptive parameters, and its performance and applicability are verified.

Originality/value

The results show that the proposed model has a 62.7% performance improvement over the distribution model with fixed parameters. Moreover, the parameter function of the distribution model can be regarded as a quantitative analysis of the degree of influence of the traffic flow state on THW.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 13 November 2018

Hongshi Lu, Li Aijun, Wang Changqing and Zabolotnov Michaelovitch Yuriy

This paper aims to present the impact analysis of payload rendezvous with tethered satellite system and the design of an adaptive sliding mode controller which can deal with mass…

Abstract

Purpose

This paper aims to present the impact analysis of payload rendezvous with tethered satellite system and the design of an adaptive sliding mode controller which can deal with mass parameter uncertainty of targeted payload, so that the proposed cislunar transportation scheme with spinning tether system could be extended to a wider and more practical range.

Design/methodology/approach

In this work, dynamical model is first derived based on Langrangian equations to describe the motion of a spinning tether system in an arbitrary Keplerian orbit, which takes the mass of spacecraft, tether and payload into account. Orbital design and optimal open-loop control for the payload tossed by the spinning tether system are then presented. The real payload rendezvous impact around docking point is also analyzed. Based on reference acceleration trajectory given by optimal theories, a sliding mode controller with saturation functions is designed in the close-loop control of payload tossing stage under initial disturbance caused by actual rendezvous error. To alleviate the influence of inaccurate/unknown payload mass parameters, the adaptive law is designed and integrated into sliding mode controller. Finally, the performance of the proposed controller is evaluated using simulations. Simulation results validate that proposed controller is found effective in driving the spinning tether system to carry payload into desired cislunar transfer orbit and in dealing with payload mass parameter uncertainty in a relatively large range.

Findings

The results show that unideal rendezvous manoeuvres have significant impact on in-plane motion of spinning tether system, and the proposed adaptive sliding mode controller with saturation functions not only guarantees the stability but also provides good performance and robustness against the parameter and unstructured uncertainties.

Originality/value

This work addresses the analysis of actual impact on spinning tether system motion when payload is docking with system within tolerated docking window, rather than at the particular ideal docking point, and the robust tracking control of deep-space payload tossing missions with the spinning tether system using the adaptive sliding mode controller dealing with parameter uncertainties. This combination has not been proposed before for tracking control of multivariable spinning tether systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 December 2003

M.A. Duarte‐Mermoud, J.M. Mendez‐Miquel, R. Castro‐Linares and A. Castillo‐Facuse

This paper addresses the adaptive passivation of multi‐input multi‐output (MIMO) non‐linear systems,with unknown parameters. The class of MIMO non‐linear systems considered here…

Abstract

This paper addresses the adaptive passivation of multi‐input multi‐output (MIMO) non‐linear systems,with unknown parameters. The class of MIMO non‐linear systems considered here has an explicit linear parametric uncertainty and it is made equivalent to a passive system by means of an adaptive controller with adaptive laws specially designed, which include suitable time‐varying gains. The solution presented here is an extension of that obtained by the authors for single‐input single‐output (SISO) systems. The proposed algorithm was applied, at simulation level, to models of dynamical MIMO systems, to exemplify the controller design methodology and to observe the adaptive system behavior.

Details

Kybernetes, vol. 32 no. 9/10
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 13000