Search results

1 – 10 of over 7000
Article
Publication date: 24 November 2023

Iman Rastgar, Javad Rezaeian, Iraj Mahdavi and Parviz Fattahi

The purpose of this study is to propose a new mathematical model that integrates strategic decision-making with tactical-operational decision-making in order to optimize…

Abstract

Purpose

The purpose of this study is to propose a new mathematical model that integrates strategic decision-making with tactical-operational decision-making in order to optimize production and scheduling decisions.

Design/methodology/approach

This study presents a multi-objective optimization framework to make production planning, scheduling and maintenance decisions. An epsilon-constraint method is used to solve small instances of the model, while new hybrid optimization algorithms, including multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm, multi-objective harmony search and improved multi-objective harmony search (IMOHS) are developed to address the high complexity of large-scale problems.

Findings

The computational results demonstrate that the metaheuristic algorithms are effective in obtaining economic solutions within a reasonable computational time. In particular, the results show that the IMOHS algorithm is able to provide optimal Pareto solutions for the proposed model compared to the other three algorithms.

Originality/value

This study presents a new mathematical model that simultaneously determines green production planning and scheduling decisions by minimizing the sum of the total cost, makespan, lateness and energy consumption criteria. Integrating production and scheduling of a shop floor is critical for achieving optimal operational performance in production planning. To the best of the authors' knowledge, the integration of production planning and maintenance has not been adequately addressed.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 13 January 2022

Himanshukumar Rajendrabhai Patel

Fuzzy-based metaheuristic algorithm is used to optimize the fuzzy controllers for the nonlinear level control system subject to uncertainty specially in the main actuator that has…

Abstract

Purpose

Fuzzy-based metaheuristic algorithm is used to optimize the fuzzy controllers for the nonlinear level control system subject to uncertainty specially in the main actuator that has lost effectiveness (LOE). To optimize the fuzzy controller, type-1 harmonic search (HS) and interval type-2 (HS) will be used.

Design/methodology/approach

The type-1 and type-2 fuzzy-based HS algorithms are designed for optimization of fuzzy controllers for Fault-Tolerant Control (FTC) applications, and this research proposes a fuzzy-based HS metaheuristic method. The performance of a fuzzy logic-based HS algorithm applied to a nonlinear two-tank level control process with a main actuator that has lost effectiveness (LOE) and also the same controller will be tested on DC motor angular position control with and without noise.

Findings

The key contribution of this work is the discovery of the best approach for generating an optimal vector of values for the fuzzy controller's membership function optimization. This is done in order to improve the controller's performance, bringing the process value of the two-tank level control process closer to the target process value (set point). It is worth noting that the type-1 fuzzy controller that has been optimized is an interval type-2 fuzzy system, which can handle more uncertainty than a type-1 fuzzy system.

Originality/value

The type-1 and type-2 fuzzy-based HS algorithms are designed for optimization of fuzzy controllers for FTC applications, and this research proposes a fuzzy-based HS metaheuristic method. The performance of a fuzzy logic-based HS algorithm applied to a nonlinear two-tank level control process with a main actuator that has LOE will be tested on DC motor angular position control with noise. Two nonlinear uncertain processes are used to demonstrate the effectiveness of the proposed control scheme.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 20 January 2022

Vahid Goodarzimehr, Fereydoon Omidinasab and Nasser Taghizadieh

This paper aims to present a new hybrid algorithm of Particle Swarm Optimization and the Genetic Algorithm (PSOGA) to optimize the space trusses with continuous design variables…

147

Abstract

Purpose

This paper aims to present a new hybrid algorithm of Particle Swarm Optimization and the Genetic Algorithm (PSOGA) to optimize the space trusses with continuous design variables. The PSOGA is an efficient hybridized algorithm to solve optimization problems.

Design/methodology/approach

These algorithms have shown outstanding performance in solving optimization problems with continuous variables. The PSO conceptually models the social behavior of birds, in which individual birds exchange information about their position, velocity and fitness. The behavior of a flock is influencing the probability of migration to other regions with high fitness. The GAs procedure is based on the mechanism of natural selection. The present study uses mutation, random selection and reproduction to reach the best genetic algorithm by the operators of natural genetics. Thus, only identical chromosomes or particles can be converged.

Findings

In this research, using the idea of hybridization PSO and GA algorithms are hybridized and a new meta-heuristic algorithm is developed to minimize the space trusses with continuous design variables. To showing the efficiency and robustness of the new algorithm, several benchmark problems are solved and compared with other researchers.

Originality/value

The results indicate that the hybrid PSO algorithm improved in both exploration and exploitation. The PSO algorithm can be used to minimize the weight of structural problems under stress and displacement constraints.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 August 2022

Fran Sérgio Lobato, Gustavo Barbosa Libotte and Gustavo Mendes Platt

In this work, the multi-objective optimization shuffled complex evolution is proposed. The algorithm is based on the extension of shuffled complex evolution, by incorporating two…

Abstract

Purpose

In this work, the multi-objective optimization shuffled complex evolution is proposed. The algorithm is based on the extension of shuffled complex evolution, by incorporating two classical operators into the original algorithm: the rank ordering and crowding distance. In order to accelerate the convergence process, a Local Search strategy based on the generation of potential candidates by using Latin Hypercube method is also proposed.

Design/methodology/approach

The multi-objective optimization shuffled complex evolution is used to accelerate the convergence process and to reduce the number of objective function evaluations.

Findings

In general, the proposed methodology was able to solve a classical mechanical engineering problem with different characteristics. From a statistical point of view, we demonstrated that differences may exist between the proposed methodology and other evolutionary strategies concerning two different metrics (convergence and diversity), for a class of benchmark functions (ZDT functions).

Originality/value

The development of a new numerical method to solve multi-objective optimization problems is the major contribution.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 April 2022

Srinivasa Acharya, Ganesan Sivarajan, D. Vijaya Kumar and Subramanian Srikrishna

Currently, more renewable energy resources with advanced technology levels are incorporated in the electric power networks. Under this circumstance, the attainment of optimal…

77

Abstract

Purpose

Currently, more renewable energy resources with advanced technology levels are incorporated in the electric power networks. Under this circumstance, the attainment of optimal economic dispatch is very much essential by the power system as the system requires more power generation cost and also has a great demand for electrical energy. Therefore, one of the primary difficulties in the power system is lowering the cost of power generation, which includes both economic and environmental costs. This study/paper aims to introduce a meta-heuristic algorithm, which offers an solution to the combined economic and emission dispatch (CEED).

Design/methodology/approach

A novel algorithm termed Levy-based glowworm swarm optimization (LGSO) is proposed in this work, and it provides an excellent solution to the combined economic and emission dispatch (CEED) difficulties by specifying the generation of the optimal renewable energy systems (RES). Moreover, in hybrid renewable energy systems, the proposed scheme is extended by connecting the wind turbine because the thermal power plant could not control the aforementioned costs. In terms of economic cost, emission cost and transmission loss, the suggested CEED model outperforms other conventional schemes genetic algorithm, Grey wolf optimization, whale optimization algorithm (WOA), dragonfly algorithm (DA) and glowworm swarm optimization (GSO) and demonstrates its efficiency.

Findings

According to the results, the suggested model for Iteration 20 was outperformed GSO, DA and WOA by 23.46%, 97.33% and 93.33%, respectively. For Iteration 40, the proposed LGSO was 60%, 99.73% and 97.06% better than GSO, DA and WOA methods, respectively. The proposed model for Iteration 60 was 71.50% better than GSO, 96.56% better than DA and 95.25% better than WOA. As a result, the proposed LGSO was shown to be superior to other existing techniques with respect to the least cost and loss.

Originality/value

This research introduces the latest optimization algorithm known as LGSO to provide an excellent solution to the CEED difficulties by specifying the generation of the optimal RES. To the best of the authors’ knowledge, this is the first work that utilizes LGSO-based optimization for providing an excellent solution to the CEED difficulties by specifying the generation of the optimal RES.

Details

Kybernetes, vol. 52 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 24 April 2020

Ewaoche John Okampo and Nnamdi I. Nwulu

Reverse osmosis (RO) has become an important method of desalination to meet the ever-growing water needs around the world. Its integration with renewable energy source (RES…

Abstract

Purpose

Reverse osmosis (RO) has become an important method of desalination to meet the ever-growing water needs around the world. Its integration with renewable energy source (RES) reduces the environmental impact of gas emissions and cost of conventional fossil energy sources. The optimal sizing of energy sources to power RO desalination system is intended mainly to minimize the annualized cost of the system and by extension minimize freshwater cost while maximizing production.

Design/methodology/approach

In this study, a mathematical optimization approach is used to determine the optimal energy mix, which includes grid power, diesel generator and a photovoltaic (PV) module to supply an RO desalination unit. Three cases of optimal sizing approach were compared. Case 1 is a system with only grid power and diesel generator as energy sources; Case 2 has PV incorporated in the energy supply mix while Case 3 has the three energy sources and a Time of Use (TOU) demand response program on the demand side.

Findings

The results of implementing the optimization models show that Case 3 turnout the highest freshwater production (1,521 m3/day) at a unit cost of 1.36$/m3 when compared to Case 1 with daily freshwater production of 1,250 m3/day at a unit cost of 1.68$/m3 and Case 2 having a daily freshwater production of 1,501 m3/day at a unit cost of 1.33$/m3.

Originality/value

The integration of RES to power desalination system with application of TOU demand response is the significance of this study.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 17 April 2007

Jenn Riley and Michelle Dalmau

The purpose of this paper is to describe a user‐centered approach to developing a metadata model for an inter‐institutional project to describe and digitize sheet music…

1420

Abstract

Purpose

The purpose of this paper is to describe a user‐centered approach to developing a metadata model for an inter‐institutional project to describe and digitize sheet music collections.

Design/methodology/approach

Query logs analysis, card sort, and task scenario studies were used to explore users' needs for the discovery of sheet music. Findings from these studies were used to design an interoperable metadata model for sheet music meeting the needs of libraries, archives, and museums.

Findings

The user studies conducted demonstrated to the project team the need and methods for recording titles, names, dates, subjects, and cover art for sheet music described as part of the IN Harmony project. It was also learned that tying user studies directly to the design of metadata models can be an effective approach for digital library projects.

Practical implications

The metadata model developed by the IN Harmony project will be reusable for other sheet music collections at a wide variety of institutions. The user‐centered methodologies used to develop the metadata model will similarly be reusable for other digital library projects in the future.

Originality/value

The approach described in this paper brings together standard user study methodologies with metadata design in a novel way, and demonstrates the effectiveness of a methodology that can be reused to plan metadata creation in future digital projects.

Details

The Electronic Library, vol. 25 no. 2
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 11 November 2013

Leandro dos Santos Coelho, Viviana Cocco Mariani, Marsil de Athayde Costa e Silva, Nelson Jhoe Batistela and Jean Vianei Leite

The purpose of this paper is to introduce a chaotic harmony search (CHS) approach based on the chaotic Zaslavskii map to parameters identification of Jiles-Atherton vector…

Abstract

Purpose

The purpose of this paper is to introduce a chaotic harmony search (CHS) approach based on the chaotic Zaslavskii map to parameters identification of Jiles-Atherton vector hysteresis model.

Design/methodology/approach

In laminated magnetic cores when the magnetic flux rotates in the lamination plane, one observes an increase in the magnetic losses. The magnetization in these regions is very complex needing a vector model to analyze and predict its behavior. The vector Jiles-Atherton hysteresis model can be employed in rotational flux modeling. The vector Jiles-Atherton model needs a set of five parameters for each space direction taken into account. In this context, a significant amount of research has already been undertaken to investigate the application of metaheuristics in solving difficult engineering optimization problems. Harmony search (HS) is a derivative-free real parameter optimization metaheuristic algorithm, and it draws inspiration from the musical improvisation process of searching for a perfect state of harmony. In this paper, a CHS approach based on the chaotic Zaslavskii map is proposed and evaluated.

Findings

The proposed CHS presents an efficient strategy to improve the search performance in preventing premature convergence to local minima when compared with the classical HS algorithm. Numerical comparisons with results using classical HS, genetic algorithms (GAs), particle swarm optimization (PSO), and evolution strategies (ES) demonstrated that the performance of the CHS is promising in parameters identification of Jiles-Atherton vector hysteresis model.

Originality/value

This paper presents an efficient CHS approach applied to parameters identification of Jiles-Atherton vector hysteresis model.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 March 2015

Fouad Allouani, Djamel Boukhetala, Fares Boudjema and Gao Xiao-Zhi

The two main purposes of this paper are: first, the development of a new optimization algorithm called GHSACO by incorporating the global-best harmony search (GHS) which is a…

Abstract

Purpose

The two main purposes of this paper are: first, the development of a new optimization algorithm called GHSACO by incorporating the global-best harmony search (GHS) which is a stochastic optimization algorithm recently developed, with the ant colony optimization (ACO) algorithm. Second, design of a new indirect adaptive recurrent fuzzy-neural controller (IARFNNC) for uncertain nonlinear systems using the developed optimization method (GHSACO) and the concept of the supervisory controller.

Design/methodology/approach

The novel optimization method introduces a novel improvization process, which is different from that of the GHS in the following aspects: a modified harmony memory representation and conception. The use of a global random switching mechanism to monitor the choice between the ACO and GHS. An additional memory consideration selection rule using the ACO random proportional transition rule with a pheromone trail update mechanism. The developed optimization method is applied for parametric optimization of all recurrent fuzzy neural networks adaptive controller parameters. In addition, in order to guarantee that the system states are confined to the safe region, a supervisory controller is incorporated into the IARFNNC global structure.

Findings

First, to analyze the performance of GHSACO method and shows its effectiveness, some benchmark functions with different dimensions are used. Simulation results demonstrate that it can find significantly better solutions when compared with the Harmony Search (HS), GHS, improved HS (IHS) and conventional ACO algorithm. In addition, simulation results obtained using an example of nonlinear system shows clearly the feasibility and the applicability of the proposed control method and the superiority of the GHSACO method compared to the HS, its variants, particle swarm optimization, and genetic algorithms applied to the same problem.

Originality/value

The proposed new GHS algorithm is more efficient than the original HS method and its most known variants IHS and GHS. The proposed control method is applicable to any uncertain nonlinear system belongs in the class of systems treated in this paper.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 8 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 27 January 2022

Sirasani Srinivasa Rao and Subba Ramaiah V.

The purpose of this research is to design and develop a technique for polyphase code design for the radar system.

Abstract

Purpose

The purpose of this research is to design and develop a technique for polyphase code design for the radar system.

Design/methodology/approach

The proposed fractional harmony search algorithm (FHSA) performs the polyphase code design. The FHSA binds the properties of the harmony search algorithm and the fractional theory. An optimal fitness function based on the coherence and the autocorrelation is derived through the proposed FHSA. The performance metrics such as power, autocorrelation and cross-correlation measure the efficiency of the algorithm.

Findings

The performance metrics such as power, autocorrelation and cross-correlation is used to measure the efficiency of the algorithm. The simulation results show that the proposed optimal phase code design with FHSA outperforms the existing models with 1.420859, 4.09E−07, 3.69E−18 and 0.000581 W for the fitness, autocorrelation, cross-correlation and power, respectively.

Originality/value

The proposed FHSA for the design and development of the polyphase code design is developed for the RADAR is done to reduce the effect of the Doppler shift.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of over 7000