Search results

1 – 10 of 37
Article
Publication date: 13 November 2018

Hongshi Lu, Li Aijun, Wang Changqing and Zabolotnov Michaelovitch Yuriy

This paper aims to present the impact analysis of payload rendezvous with tethered satellite system and the design of an adaptive sliding mode controller which can deal with mass…

Abstract

Purpose

This paper aims to present the impact analysis of payload rendezvous with tethered satellite system and the design of an adaptive sliding mode controller which can deal with mass parameter uncertainty of targeted payload, so that the proposed cislunar transportation scheme with spinning tether system could be extended to a wider and more practical range.

Design/methodology/approach

In this work, dynamical model is first derived based on Langrangian equations to describe the motion of a spinning tether system in an arbitrary Keplerian orbit, which takes the mass of spacecraft, tether and payload into account. Orbital design and optimal open-loop control for the payload tossed by the spinning tether system are then presented. The real payload rendezvous impact around docking point is also analyzed. Based on reference acceleration trajectory given by optimal theories, a sliding mode controller with saturation functions is designed in the close-loop control of payload tossing stage under initial disturbance caused by actual rendezvous error. To alleviate the influence of inaccurate/unknown payload mass parameters, the adaptive law is designed and integrated into sliding mode controller. Finally, the performance of the proposed controller is evaluated using simulations. Simulation results validate that proposed controller is found effective in driving the spinning tether system to carry payload into desired cislunar transfer orbit and in dealing with payload mass parameter uncertainty in a relatively large range.

Findings

The results show that unideal rendezvous manoeuvres have significant impact on in-plane motion of spinning tether system, and the proposed adaptive sliding mode controller with saturation functions not only guarantees the stability but also provides good performance and robustness against the parameter and unstructured uncertainties.

Originality/value

This work addresses the analysis of actual impact on spinning tether system motion when payload is docking with system within tolerated docking window, rather than at the particular ideal docking point, and the robust tracking control of deep-space payload tossing missions with the spinning tether system using the adaptive sliding mode controller dealing with parameter uncertainties. This combination has not been proposed before for tracking control of multivariable spinning tether systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 April 2004

Forrest Bishop

“Microscale light sails” (MLS) are simultaneously manufactured and launched as a matter‐beam from a proposed Lunar facility. Lunar aluminum would be refined for the feedstock of…

Abstract

“Microscale light sails” (MLS) are simultaneously manufactured and launched as a matter‐beam from a proposed Lunar facility. Lunar aluminum would be refined for the feedstock of this “thin film beam generator”. A battery of linear, aluminum‐vapor, rocket engines make up the first stage of a “laser cooled thermal beam”. After a supersonic expansion, the condensing sheets of AlI atoms undergo light‐force mediated cooling, guidance, and compression. The individual, partly condensed sheets are brought together at sufficiently low energy to form the core of the thin film. MLS‐swarms can become either the reaction‐mass for a deep space, beam‐propulsion transportation network, the constituents of an orbital space‐mirror or an interstellar, laser‐driven probe, or simply be used as raw building material for outer space structures. An articulation of the beam generator may manufacture solar cells and other kinds of thin‐films from space resources.

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 August 2003

Xu Rui, Cui Ping‐yuan, Xu Xiao‐fei and Cui Hu‐tao

Because of indeterminateness of the environment and delay of the communication, deep space spacecraft is required to be autonomous. Planning technology is studied in order to…

Abstract

Because of indeterminateness of the environment and delay of the communication, deep space spacecraft is required to be autonomous. Planning technology is studied in order to realize the spacecraft autonomy. First, a multi‐agent planning system (MAPS) based on temporal constraint satisfaction is proposed for concurrency and distribution of spacecraft system. Second, timeline concept is used to describe simultaneous activity, continue time, resource and temporal constraints. Third, for every planning agent in the MAPS, its layered architecture is designed and planning algorithm based on the temporal constraint satisfaction is given in detail. Finally, taking some key subsystems of deep space explorer as an example, the prototype system of MAPS is implemented. The results show that with the communication and cooperation of the planning agents, the MAPS is able to produce complete plan for explorer mission quickly under the complex constraints of time and resource.

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 February 2004

556

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 5 April 2019

Chengchao Bai, Jifeng Guo and Hongxing Zheng

The purpose of this paper is to verify the correctness and feasibility of simultaneous localization and mapping (SLAM) algorithm based on red-green-blue depth (RGB-D) camera in…

Abstract

Purpose

The purpose of this paper is to verify the correctness and feasibility of simultaneous localization and mapping (SLAM) algorithm based on red-green-blue depth (RGB-D) camera in high precision navigation and localization of celestial exploration rover.

Design/methodology/approach

First, a positioning algorithm based on depth camera is proposed. Second, the realization method is described from the five aspects of feature detection method, feature point matching, point cloud mapping, motion estimation and high precision optimization. Feature detection: taking the precision, real-time and motion basics as the comprehensive consideration, the ORB (oriented FAST and rotated BRIEF) features extraction method is adopted; feature point matching: solves the similarity measure of the feature descriptor vector and how to remove the mismatch point; point cloud mapping: the two-dimensional information on RGB and the depth information on D corresponding; motion estimation: the iterative closest point algorithm is used to solve point set registration; and high precision optimization: optimized by using the graph optimization method.

Findings

The proposed high-precision SLAM algorithm is very effective for solving high precision navigation and positioning of celestial exploration rover.

Research limitations/implications

In this paper, the simulation validation is based on an open source data set for testing; the physical verification is based on the existing unmanned vehicle platform to simulate the celestial exploration rover.

Practical implications

This paper presents a RGB-D camera-based navigation algorithm, which can be obtained by simulation experiment and physical verification. The real-time and accuracy of the algorithm are well behaved and have strong applicability, which can support the tests and experiments on hardware platform and have a better environmental adaptability.

Originality/value

The proposed SLAM algorithm can deal with the high precision navigation and positioning of celestial exploration rover effectively. Taking into account the current wide application prospect of computer vision, the method in this paper can provide a study foundation for the deep space probe.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Abstract

Details

International Journal of Innovation Science, vol. 2 no. 4
Type: Research Article
ISSN: 1757-2223

Article
Publication date: 2 November 2015

Pengbin Gao, Yexin Liu, Xiaoli Li and Yan Wang

This paper aims to unravel the technological innovation pattern in China’s aerospace industry. The technological innovation pattern of China’s aerospace industry is identified and…

1393

Abstract

Purpose

This paper aims to unravel the technological innovation pattern in China’s aerospace industry. The technological innovation pattern of China’s aerospace industry is identified and its theoretical foundation, structure, philosophy, formation and effects on the development of China’s aerospace industry are explored.

Design/methodology/approach

First, the theoretical foundation of synergy innovation of China’s aerospace industry is reviewed to further identify the technological innovation pattern. Second, Chinese ancient philosophy (dialectical thinking) is used to explain the structure and process of synergy innovation in China’s aerospace industry. Third, the formation process of synergy innovation is introduced, and, finally, the effects of synergy innovation are discussed.

Findings

The technological innovation pattern of China’s aerospace industry has undergone an evolutionary process. During this process, China’s aerospace firms have formed a unique technological innovation pattern, synergy innovation, under China’s special political and economic background. The synergy innovation has three characteristics, including original, integrated and application-based. The synergy innovation pattern application is one of the most important reasons behind the great achievements of China’s aerospace industry.

Originality/value

A unique technological innovation pattern, synergy innovation, is proposed for the first time. A new perspective for understanding innovation is provided by applying the Chinese dialectical thinking to decipher the philosophy of the technological innovation pattern. Based on this, this paper suggests that China’s aerospace industry should follow the situation and apply the synergy innovation pattern to achieve development and growth. This paper also illustrates a multi-method approach and emphasizes the different levels of organizing for innovation.

Details

Chinese Management Studies, vol. 9 no. 4
Type: Research Article
ISSN: 1750-614X

Keywords

Book part
Publication date: 6 September 2019

Abstract

Details

Space Tourism
Type: Book
ISBN: 978-1-78973-495-9

Article
Publication date: 3 May 2016

Alena Probst, Graciela González Peytaví, Bernd Eissfeller and Roger Förstner

The paper aims to introduce a trade-off method for selecting a mission concept for an asteroid mining mission. In particular, the method is applied to the KaNaRiA mission concept…

1021

Abstract

Purpose

The paper aims to introduce a trade-off method for selecting a mission concept for an asteroid mining mission. In particular, the method is applied to the KaNaRiA mission concept selection. After introducing the KaNaRiA project, the KaNaRiA mission concept selection and reference scenario are described in detail.

Design/methodology/approach

The paper introduces past relevant asteroid missions in general and the previous studies on asteroid mining in particular. Based on the review of past mission concepts to minor planets, the paper discusses the operational phases of a potential industrial and commercial space mining mission. The methodology for selecting a mission reference scenario is explained and the selected KaNaRiA mission scenario is described.

Findings

The key technology driver for a space mining mission is the autonomous on-board capability related to navigation, guidance and handling of hardware/software anomalies or unexpected events. With the methodology presented here, it is possible to derive a mission concept which provides an adequate test-bed for the validation and verification of algorithms for enhanced spacecraft autonomy. This is the primary scientific and engineering goal of the KaNaRiA project.

Practical implications

The mission concept selection method presented here can be used as a generalized approach for mining missions targeting asteroids in the solar system.

Originality/value

The availability and usage of space resources is seen as a possible solution for the imminent problem of diminishing terrestrial materials in the foreseen future. This paper explains a methodology to select mission concepts for asteroid mining missions.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 October 1998

Terry Ford

Provides an independent account of the Matra Marconi Space company’s range of engineering activities. Its technologies include earth observation, communications, science…

Abstract

Provides an independent account of the Matra Marconi Space company’s range of engineering activities. Its technologies include earth observation, communications, science, transportation and manned systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 70 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 37