Search results

1 – 10 of 21
Article
Publication date: 1 August 1999

Zsolt Illyefalvi‐Vitéz, Alfons Vervaet, André Van Calster, Nihal Sinnadurai, Marko Hrovat, Paul Svasta, Endre Tóth, Darko Belavic, Radu Mihai Ionescu and William Dennehy

The opportunity for mutual benefit across Europe to develop low‐cost MCM technologies arose from recognition of the scientific skills and design and prototyping capabilities in…

Abstract

The opportunity for mutual benefit across Europe to develop low‐cost MCM technologies arose from recognition of the scientific skills and design and prototyping capabilities in organic and inorganic circuits in countries of Central Europe. As a result, the leading research institutions and small/medium‐size enterprises of Hungary, Romania and Slovenia together with relevant institutions of the UK and Belgium proposed and received approval for a European Union INCO‐Copernicus project “Cheap multichip models” to establish fast prototyping low cost multichip module (MCM) technology facilities. The project commenced in May 1997.

Details

Microelectronics International, vol. 16 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 June 1999

G. Harsányi, M. Réczey, R. Dobay, I. Lepsényi, Zs. Illyefalvi‐Vitéz, J. Van den Steen, A. Vervaet, W. Reinert, J. Urbancik, A. Guljajev, Cs. Visy, Gy. Inzelt and I. Bársony

Atmospheric dependent, gas sensitive resistors seem to be good candidates for detecting critical air pollution levels. Recently, great progress has been made in the development of…

685

Abstract

Atmospheric dependent, gas sensitive resistors seem to be good candidates for detecting critical air pollution levels. Recently, great progress has been made in the development of various sensor types, but less attention seems to be paid to the integration of sensor elements with different characteristics. The aim of this international project is to develop a smart hybrid gas multi‐sensor module for environmental applications, i.e. by combining classical thick‐ and thin‐film elements with polymer‐film based sensors and also a signal processing ASIC within a single package, which should be useful for all sensor types. The module should enable multi‐sensor operation as well, when connected to an intelligent signal‐processing unit.

Details

Sensor Review, vol. 19 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Book part
Publication date: 12 October 2012

John Hamilton Bradford

Purpose – This essay attempts to answer the question, “What distinguishes inter-human influence from other forms of influence?”Design/methodology/approach – Specifying the…

Abstract

Purpose – This essay attempts to answer the question, “What distinguishes inter-human influence from other forms of influence?”

Design/methodology/approach – Specifying the micro-foundations of social structures in terms of communicative inferences necessitates a revision of the concept of social structures (and institutions) as distributed, and hence, uncertain, structures of expectation. Institutional realities are generated in linguistic interaction through the indirect communication of generic references. The generalizing function of language – in particular, abstraction and memory – coupled with its reflexive function, to turn references into things, are sufficient to generate both social structures and institutions as collective inferences.

Findings – Social relations are fundamentally communicative relations. The communicative relation is triadic, implying an enunciator, an audience, and some referential content. Through linguistic communication, humans are capable of communicating locally with others about others nonlocally. Institutions exist only as expectations concerning the expectations of others. These expectations, however, are not only in the mind, and they are not exclusively psychological entities. Linguistically, these expectations appear as the reported statement within the reporting statement, that is, they are constituted through indirect discourse.

Research limitations/implications – An important implication for current sociological theory is that, from the point of view of a sociology defined as communication about communication from within communication, institutional realities should not be reified as existing naturalistically or objectively above or behind the communications through which they are instantiated.

Originality value – This approach, then, is decidedly anti-“realist.” The goal of such research is to examine the inadequacy of nonreflexive models of social order. Accounts of how sets of social relationships emerge will remain inadequate if they do not reflect upon the cognitive and communicative processes which make possible the consideration of such structures.

Book part
Publication date: 25 March 2011

Johan M.G. van der Dennen

In this chapter, I use the term “biopolitics” to mean evolutionarily informed political science. Politics has been characterized as “Who gets what, when, and how” (Lasswell, 1936

Abstract

In this chapter, I use the term “biopolitics” to mean evolutionarily informed political science. Politics has been characterized as “Who gets what, when, and how” (Lasswell, 1936), but rather than about material possessions, politics is understood to be about power, more specifically about collective power, especially differential group power competition, hierarchy and stratification in power distribution, and the universal struggle to enhance power, and to maintain or challenge/destroy this status quo. Politics “should be found in any system of nature in which conflicts of interest exist among cooperating organic units” (Johnson, 1995, p. 279). My main focus will be competitive intergroup relations in monkeys and apes, or as I (van der Dennen, 1995) called it “intergroup agonistic behavior” (IAB). I also briefly treat interindividual and intercoalitionary agonistic behavior when relevant.

Details

Biology and Politics
Type: Book
ISBN: 978-0-85724-580-9

Article
Publication date: 10 January 2023

Betsy Van der Veer Martens

This paper reviews research developments in semiosis (sign activity) as theorized by Peirce, Eco and Sebeok, focusing specifically on the current study of “semiotic threshold…

Abstract

Purpose

This paper reviews research developments in semiosis (sign activity) as theorized by Peirce, Eco and Sebeok, focusing specifically on the current study of “semiotic threshold zones,” which range from the origins of life through various nonhuman life forms to artificial life forms, including those symbolic thresholds most familiar to library and information science (LIS) researchers. The intent is to illustrate potential opportunities for LIS research beyond its present boundaries.

Design/methodology/approach

The paper provides a framework that describes six semiotic threshold zones (presemiotic, protosemiotic, phytosemiotic, zoosemiotic, symbolic and polysemiotic) and notable work being done by researchers in each.

Findings

While semiotic researchers are still defining the continuum of semiotic thresholds, this focus on thresholds can provide a unifying framework for significance as human and nonhuman interpretations of a wide variety of signs accompanied by a better understanding of their relationships becomes more urgent in a rapidly changing global environment.

Originality/value

Though a variety of semiotic-related topics have appeared in the LIS literature, semiotic thresholds and their potential relationships to LIS research have not been previously discussed there. LIS has traditionally tasked itself with the recording, dissemination and preservation of knowledge, and in a world that faces unprecedented environmental and global challenges for all species, the importance of these thresholds may well be considered as part of our professional obligations in potentially documenting and archiving the critical differences in semiosis that extend beyond purely human knowledge.

Details

Journal of Documentation, vol. 79 no. 4
Type: Research Article
ISSN: 0022-0418

Keywords

Article
Publication date: 25 July 2008

Jiří Franc and Stanislav Nešpůrek

Screen‐printing is an appropriate technique for the manufacture of large‐area position‐sensitive detectors. The purpose of this paper is to present simple methods of paste…

Abstract

Purpose

Screen‐printing is an appropriate technique for the manufacture of large‐area position‐sensitive detectors. The purpose of this paper is to present simple methods of paste preparation and appropriate processing of thick films.

Design/methodology/approach

Active layers of photoconductive cells based on doped CdS0.32Se0.68 were prepared by screen‐printing and sintering at 530°C. A sulfide‐selenide mixture or a mixed crystal material and propylene glycol (PG) was deposited as a paste. PG served as the temporary paste binder. Cadmium chloride was used as a fluxing agent and a donor source. Copper(II) chloride was used as an acceptor source. The effect of the paste composition and sintering time on the resistance and slope of the resistance vs illumination dependence of cells was investigated. These parameters were checked again after eight years of cell storage.

Findings

The cell properties are considerably influenced by the time periods between printing, drying, and sintering. Addition of 2.3 mg Cu2 + and 17 mg Cl per 1 g of mixed crystal CdS0.32Se0.68 enables the preparation of photoconductive cells with the slope higher than 1.2 and a very good long‐term stability of cell parameters.

Research limitations/implications

The effect of the cell parameters' dependence on the paste, age and the time between printing and sintering rendered it impossible to make a more detailed examination after eight‐year storage of samples.

Originality/value

The paper is of value in showing that in the prepared cells exhibit high slopes of resistance‐illumination dependence. The high slope enables detection of laser pulses using only simple filtration of ambient illumination. The changes in photoconductive cell properties after eight‐year storage are presented.

Details

Microelectronics International, vol. 25 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 15 August 2024

Moontaha Farin, Jarin Tasnim Maisha, Ian Gibson and M. Tarik Arafat

Additive manufacturing (AM), also known as three-dimensional (3D) printing technology, has been used in the health-care industry for over two decades. It is in high demand in the…

Abstract

Purpose

Additive manufacturing (AM), also known as three-dimensional (3D) printing technology, has been used in the health-care industry for over two decades. It is in high demand in the health-care industry due to its strength to manufacture custom-designed and personalized 3D constructs. Recently, AM technologies are being explored to develop personalized drug delivery systems, such as personalized oral dosages, implants and others due to their potential to design and develop systems with complex geometry and programmed controlled release profile. Furthermore, in 2015, the US Food and Drug Administration approved the first AM medication, Spritam® (Apprecia Pharmaceuticals) which has led to tremendous interest in exploring this technology as a bespoke solution for patient-specific drug delivery systems. The purpose of this study is to provide a comprehensive overview of AM technologies applied to the development of personalized drug delivery systems, including an analysis of the commercial status of AM based drugs and delivery devices.

Design/methodology/approach

This review paper provides a detailed understanding of how AM technologies are used to develop personalized drug delivery systems. Different AM technologies and how these technologies can be chosen for a specific drug delivery system are discussed. Different types of materials used to manufacture personalized drug delivery systems are also discussed here. Furthermore, recent preclinical and clinical trials are discussed. The challenges and future perceptions of personalized medicine and the clinical use of these systems are also discussed.

Findings

Substantial works are ongoing to develop personalized medicine using AM technologies. Understanding the regulatory requirements is needed to establish this area as a point-of-care solution for patients. Furthermore, scientists, engineers and regulatory agencies need to work closely to successfully translate the research efforts to clinics.

Originality/value

This review paper highlights the recent efforts of AM-based technologies in the field of personalized drug delivery systems with an insight into the possible future direction.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 1999

S. Zhang, J. De Baets and A. Van Calster

A flip chip on board technology fully compatible with current PCB facilities is reported. It used reflow soldering for chip attachment. It required electroless nickel/immersion…

Abstract

A flip chip on board technology fully compatible with current PCB facilities is reported. It used reflow soldering for chip attachment. It required electroless nickel/immersion gold finishing on the board pads as well as on the chip pads. A no‐clean solder paste was printed on the boards before chip placement. Thus, there was no requirement for solder deposition on the chip side. Assembly tests with various chip formats proved the feasibility of this technology. X‐ray inspection and cross‐sectioning revealed the good shape and alignment of the reflowed solder joints. The reliability of underfilled assemblies was studied by ‐40 to 125°C thermal cycling. This approach is especially suitable for prototype or low volume productions as it eliminates the solder bumping process on the chip side, which is usually performed on the wafer level.

Details

Microelectronics International, vol. 16 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 June 2000

Gábor Harsányi

Polymeric materials have gained a wide theoretical interest and practical application in sensor technology. They can be used for very different purposes and may offer unique…

6224

Abstract

Polymeric materials have gained a wide theoretical interest and practical application in sensor technology. They can be used for very different purposes and may offer unique possibilities. The paper gives a broad summary about the sensor structures and sensing polymer films used in a wide variety of sensors. Finally, the present status and perspectives as well as the advantages of specific polymer based sensors are summarised.

Details

Sensor Review, vol. 20 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 July 2012

M.F. Boseman, Y.W. Kwon, D.C. Loup and E.A. Rasmussen

In order to connect a fiberglass composite structure to a steel structure, a hybrid composite made of glass and steel fibers has been studied. The hybrid composite has one end…

Abstract

Purpose

In order to connect a fiberglass composite structure to a steel structure, a hybrid composite made of glass and steel fibers has been studied. The hybrid composite has one end section with all glass fibers and the opposite end section with all steel fibers. As a result, it contains a transition section in the middle of the hybrid composite changing from glass fibers to steel fibers. The purpose of this paper is to examine interface strength at the glass to steel fiber transition section, in order to evaluate the effectiveness of the hybrid composite as a joining technique between a polymer composite structure and a metallic structure.

Design/methodology/approach

The present micromechanical study considers two types of glass to steel fiber joints: butt and overlap joints. For the butt joint, the end shape of the steel fiber is also modified to determine its effect on interface strength. The interface strength is predicted numerically based on the virtual crack closure technique to determine which joint is the strongest under various loading conditions such as tension, shear and bending. Numerical models include resin layers discretely. A virtual crack is considered inside the resin, at the resin/glass‐layer interface, and at the resin/steel‐layer interface. The crack is located at the critical regions of the joints.

Findings

Overall, the butt joint is stronger than the overlap joint regardless of loading types and directions. Furthermore, modification of an end shape of the middle fiber layers in the butt joint shifts the critical failure location.

Originality/value

The paper describes one of a few studies which investigated the interface strength of the hybrid joint made of fiberglass and steel‐fiber composites. This joint is important to connect a polymeric composite structure to a metallic structure without using conventional mechanical joints.

Details

Engineering Computations, vol. 29 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 21