Search results

1 – 10 of 49
Article
Publication date: 8 December 2022

Hoa Vo

This study aims to explore the impact of experiencing virtual reality (VR) and three-dimensional (3D) printing during the design process on the creativity of interior design…

Abstract

Purpose

This study aims to explore the impact of experiencing virtual reality (VR) and three-dimensional (3D) printing during the design process on the creativity of interior design students in a luminaire design project.

Design/methodology/approach

This study used the case-study approach within the context of a nine-week luminaire design project. Collected data included self-reported interest and engagement of students from a Qualtrics questionnaire and the ratings of their creativity via the Creative Product Semantic Scale (CPSS) with two judges.

Findings

Descriptive statistics from the Qualtrics questionnaire indicated an overall high level of student interest and engagement with the VR and 3D printing learning experience. Paired t-tests from CPSS ratings of the two judges showed a moderate increase in novelty and a significant increase in style with the introduction of VR and 3D printing technologies, respectively.

Research limitations/implications

Spearman’s correlations (rho) showed no statistical evidence for the relationships between CPSS ratings for creativity and students’ self-reported interest and engagement in VR and 3D printing learning experience.

Practical implications

Ample access time to VR technology and sufficient control over the 3D printing process are important for effective applications of Industry 4.0 technologies in organizations.

Social implications

This study dissected the confounding variables in its results as practical considerations for intergrading VR and 3D printing technologies for organizations in Industry 4.0.

Originality/value

This study acknowledged VR and 3D printing technologies as simulants for interest and engagement, which benefit creativity.

Details

Journal of Engineering, Design and Technology, vol. 22 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 30 July 2024

Aliaksei Petsiuk, Brandon Bloch, Mitch Debora and Joshua M. Pearce

Presently in multicolor fused filament-based three-dimensional (3-D) printing, significant amounts of waste material are produced through nozzle priming and purging each time a…

Abstract

Purpose

Presently in multicolor fused filament-based three-dimensional (3-D) printing, significant amounts of waste material are produced through nozzle priming and purging each time a change from one color to another occurs. G-code generating slicing software typically changes the material on each layer resulting in wipe towers with greater mass than the target object. The purpose of this study is to provide an alternative fabrication approach based on interlayer tool clustering (ITC) for the first time, which reduces the number of tool changes and is compatible with any commercial 3-D printer without the need for hardware modifications.

Design/methodology/approach

The authors have developed an open-source PrusaSlicer upgrade, compatible with Slic3r-based software, which uses the described algorithm to generate g-code toolpath and print experimental objects. The theoretical time, material and energy savings are calculated and validated to evaluate the proposed fabrication method qualitatively and quantitatively.

Findings

The experimental results show the novel ITC method can significantly increase the efficiency of multimaterial printing, with an average 1.7-fold reduction in material use, and an average 1.4-fold reduction in both time and 3-D printing energy use. In addition, this approach reduces the likelihood of technical failures in the manufacturing of the entire part by reducing the number of tool changes, or material transitions, on average by 2.4 times.

Originality/value

The obtained results support distributed recycling and additive manufacturing, which has both environmental and economic benefits and increasing the number of colors in a 3-D print increases manufacturing savings.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 June 2024

Hyunah Cho, Simon Kang, Kimberly Zhao, Vrashabh Sugandhi and George Melissinos

Prototyping with affordable 3D printers empowers small businesses to create prototypes within a day and carry out multiple iterations of design, size, shape or assembly based on…

Abstract

Purpose

Prototyping with affordable 3D printers empowers small businesses to create prototypes within a day and carry out multiple iterations of design, size, shape or assembly based on analytical results, bringing better products to market faster. This paper aims to turn the ideas into proofs of concept, advance these concepts to realistic prototypes and investigate the quality of printed prototypes prior to large-scale production.

Design/methodology/approach

The experimental approach focuses on the prototyping of portable medicine containers by Fused Deposition Modeling (FDM), modifying the prototypes by adding auxiliary braille flags that indicate patient initials and dosing information, and performing the moisture permeation study as well as the stability study for model drug products (i.e. ibuprofen tablets, guaifenesin tablets, dextromethorphan HBr soft gel capsules).

Findings

The study shows that an affordable 3D printer helps to create functional and visual prototypes that give a realistic depiction of the design and offer physical objects that could be investigated for product quality and feasibility.

Originality/value

To the best of the authors’ knowledge, this study was the first attempt to use a desktop FDM-based 3D printer to prototype portable medicine containers in a blister packet appearance with auxiliary braille flags that help validate early concepts and facilitate the conversation on refining product features in a rapid and affordable manner.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 July 2024

Muhammad Ibnu Rashyid, Mahendra Jaya and Muhammad Akhsin Muflikhun

This paper aims to use hybrid manufacturing (HM) to overcome several drawbacks of material extrusion three-dimensional (3D) printers, such as low dimension ranging from 0.2 to…

Abstract

Purpose

This paper aims to use hybrid manufacturing (HM) to overcome several drawbacks of material extrusion three-dimensional (3D) printers, such as low dimension ranging from 0.2 to 0.5 µm, resulting in a noticeable staircase effect and elevated surface roughness.

Design/methodology/approach

Subtractive manufacturing (SM) through computer numerical control milling is renowned for its precision and superior surface finish. This study integrates additive manufacturing (AM) and SM into a single material extrusion 3D printer platform, creating a HM system. Two sets of specimens, one exclusively printed and the other subjected to both printing and milling, were assessed for dimension accuracy and surface roughness.

Findings

The outcomes were promising, with postmilling accuracy reaching 99.94%. Significant reductions in surface roughness were observed at 90° (93.4% decrease from 15.598 to 1.030 µm), 45° (89% decrease from 26.727 to 2.946 µm) and the face plane (71% decrease from 12.176 to 3.535 µm).

Practical implications

The 3D printer was custom-built based on material extrusion and modified with an additional milling tool on the same gantry. An economic evaluation based on cost-manufacturing demonstrated that constructing this dual-function 3D printer costs less than US$560 in materials, offering valuable insights for researchers looking to replicate a similar machine.

Originality/value

The modified general 3D printer platform offered an easy way to postprocessing without removing the workpiece from the bed. This mechanism can reduce the downtime of changing the machine. The proven increased dimension accuracy and reduced surface roughness value increase the value of 3D-printed specimens.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 August 2023

S. Balasubrahmanyam and Deepa Sethi

Gillette’s historically successful “razor and blade” business model (RBM) has been a promising benchmark for multiple businesses across diverse industries worldwide in the past…

Abstract

Purpose

Gillette’s historically successful “razor and blade” business model (RBM) has been a promising benchmark for multiple businesses across diverse industries worldwide in the past several decades. The extant literature deals with very few nuances of this business model notwithstanding the fact that there are several variants of this business model being put to practical use by firms in diverse industries in grossly metaphorically equivalent situations.

Design/methodology/approach

This study adopts the 2 × 2 truth table framework from the domains of mathematical logic and combinatorics in fleshing out all possible (four logical possibilities) variants of the razor and blade business model for further analysis. This application presents four mutually exclusive yet collectively exhaustive possibilities on any chosen dimension. Two major dimensions (viz., provision of subsidy and intra- or extra-firm involvement in the making of razors or blades or both) form part of the discussion in this paper. In addition, this study synthesizes and streamlines entrepreneurial wisdom from multiple intra-industry and inter-industry benchmarks in terms of real-time firms explicitly or implicitly adopting several variants of the RBM that suit their unique context and idiosyncratic trajectory of evolution in situations that are grossly reflective of the metaphorically equivalent scenario of razor and recurrent blades. Inductive method of research is carried out with real-time cases from diverse industries with a pivotally common pattern of razor and blade model in some form or the other.

Findings

Several new variants of the razor and blade model (much beyond what the extant literature explicitly projects) have been discovered from the multiple metaphorically equivalent cases of RBM across industries. All of these expand the portfolio of options that relevant entrepreneurial firms can explore and exploit the best possible option chosen from them, given their unique context and idiosyncratic trajectory of growth.

Research limitations/implications

This study has enriched the literature by presenting and analyzing a more inclusive or perhaps comprehensive palette of explicit choices in the form of several variants of the RBM for the relevant entrepreneurial firms to choose from. Future research can undertake the task of comparing these variants of RBM with those of upcoming servitization business models such as guaranteed availability, subscription and performance-based contracting and exploring the prospects of diverse combinations.

Practical implications

Smart entrepreneurial firms identify and adopt inspiring benchmarks (like razor and blade model whenever appropriate) duly tweaked and blended into a gestalt benchmark for optimal profits and attractive market shares. They target diverse market segments for tied-goods with different variants or combinations of the relevant benchmarks in the form of variegated customer value propositions (CVPs) that have unique and enticing appeal to the respective market segments.

Social implications

Value-sensitive customers on the rise globally choose the option that best suits them from among multiple alternatives offered by competing firms in the market. As long as the ratio of utility to price of such an offer is among the highest, even a no-frills CVP may be most appealing to one market segment while a plush CVP may be tempting to yet another market segment simultaneously. While professional business firms embrace resource leverage practices consciously, amateur customers do so subconsciously. Each party subliminally desires to have the maximum bang-to-buck ratio as the optimal return on investment, given their priorities ceteris paribus.

Originality/value

Prior studies on the RBM have explicitly captured only a few variants of the razor and blade model. This study is perhaps the first of its kind that ferrets out many other variants (more than ten) of the razor and blade model with due simplification and exemplification, justification and demystification.

Details

Benchmarking: An International Journal, vol. 31 no. 8
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 27 May 2024

Hasan Baş, Fatih Yapıcı and Erhan Ergün

The use of additive manufacturing in many branches of industry is increasing significantly because of its many advantages, such as being able to produce complex parts that cannot…

Abstract

Purpose

The use of additive manufacturing in many branches of industry is increasing significantly because of its many advantages, such as being able to produce complex parts that cannot be produced by classical methods, using fewer materials, easing the supply chain with on-site production, being able to produce with all kinds of materials and producing lighter parts. The binder jetting technique, one of the additive manufacturing methods researched within the scope of this work, is predicted to be the additive manufacturing method that will grow the most in the next decade, according to many economic reports. Although additive manufacturing methods have many advantages, they can be slower than classical manufacturing methods regarding production speed. For this reason, this study aims to increase the manufacturing speed in the binder jetting method.

Design/methodology/approach

Adaptive slicing and variable binder amount algorithm (VBAA) were used to increase manufacturing speed in binder jetting. Taguchi method was used to optimize the layer thickness and saturation ratio in VBAA. According to the Taguchi experimental design, 27 samples were produced in nine different conditions, three replicates each. The width of the samples in their raw form was measured. Afterward, the samples were sintered at 1,500 °C for 2 h. After sintering, surface roughness and density tests were performed. Therefore, the methods used have been proven to be successful. In addition, measurement possibilities with image processing were investigated to make surface roughness measurements more accessible and more economical.

Findings

As a result of the tests, the optimum printing condition was decided to be 180–250 µm for layer thickness and 50% for saturation. A separate test sample was then designed to implement adaptive slicing. This test sample was produced in three pieces: adaptive (180–250 µm), thin layer (180 µm) and thick layer (250 µm) with the determined parameters. The roughness values of the adaptive sliced sample and the thin layer sample were similar and better than the thick layer sample. A similar result was obtained using 12.31% fewer layers in the adaptive sample than in the thin layer sample.

Originality/value

The use of adaptive slicing in binder jetting has become more efficient. In this way, it will increase the use of adaptive slicing in binder jetting. In addition, a cheap and straightforward image processing method has been developed to calculate the surface roughness of the parts.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 May 2024

Ch Kapil Ror, Vishal Mishra, Sushant Negi and Vinyas M.

This study aims to evaluate the potential of using the in-nozzle impregnation approach to reuse recycled PET (RPET) to develop continuous banana fiber (CBF) reinforced…

Abstract

Purpose

This study aims to evaluate the potential of using the in-nozzle impregnation approach to reuse recycled PET (RPET) to develop continuous banana fiber (CBF) reinforced bio-composites. The mechanical properties and fracture morphology behavior are evaluated to establish the relationships between layer spacing–microstructural characteristics–mechanical properties of CBF/RPET composite.

Design/methodology/approach

This study uses RPET filament developed from post-consumer PET bottles and CBF extracted from agricultural waste banana sap. RPET serves as the matrix material, while CBF acts as the reinforcement. The test specimens were fabricated using a customized fused deposition modeling 3D printer. In this process, customized 3D printer heads were used, which have a unique capability to extrude and deposit print fibers consisting of a CBF core coated with an RPET matrix. The tensile and flexural samples were 3D printed at varying layer spacing.

Findings

The Young’s modulus (E), yield strength (sy) and ultimate tensile strength of the CBF/RPET sample fabricated with 0.7 mm layer spacing are 1.9 times, 1.25 times and 1.8 times greater than neat RPET, respectively. Similarly, the flexural test results showed that the flexural strength of the CBF/RPET sample fabricated at 0.6 mm layer spacing was 47.52 ± 2.00 MPa, which was far greater than the flexural strength of the neat RPET sample (25.12 ± 1.94 MPa).

Social implications

This study holds significant social implications highlighting the growing environmental sustainability and plastic waste recycling concerns. The use of recycled PET material to develop 3D-printed sustainable structures may reduce resource consumption and encourages responsible production practices.

Originality/value

The key innovation lies in the concept of in-nozzle impregnation approach, where RPET is reinforced with CBF to develop a sustainable composite structure. CBF reinforcement has made RPET a superior, sustainable, environmentally friendly material that can reduce the reliance on virgin plastic material for 3D printing.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 July 2024

Manuel Rodríguez-Martín, Rosario Domingo and João Ribeiro

This study aims to investigate the scientific impact of additive manufacturing in recent years, considering its evolution as an Industry 4.0 technology and also in the current…

Abstract

Purpose

This study aims to investigate the scientific impact of additive manufacturing in recent years, considering its evolution as an Industry 4.0 technology and also in the current context of Industry 5.0. For this aim, advanced statistics and scientometric tools have been used.

Design/methodology/approach

This study aims to explore the trends and impacts of additive manufacturing, focusing on its evolution and its relationship with Industry 4.0 and 5.0. For this purpose, a scientometric study and a meta-analysis of data extracted from the scientific Scopus database have been carried out. R programming and specific bibliometric software have been used to conduct the research. Initially, the data were evaluated from various perspectives, including sources, topics and impact indexes, to assess trends derived from the volume of publications, the impact of sources and affiliations, as well as the production segmented by country and the relationships between authors from different countries. Subsequently, a meta-analysis on keywords has been carried out using two distinct clustering methodologies: link strength and fractionalization. The results obtained were compared to establish a specific taxonomy of the AM subtopics, considering AM as a single body of knowledge related to Industries 4.0 and 5.0 paradigms. The analyses carried out have shown the impact and strong evolution of additive manufacturing as a field of knowledge at the world level, both from the point of view of manufacturing processes and from the point of view of materials science. In addition, some differences have been detected depending on the country. As a result of the meta-analysis, four different subtopics have been detected, some of which are highly related to other technologies and approaches in Industries 4.0 and 5.0 paradigms. Additionally, it establishes a comprehensive taxonomy for AM research, serving as a foundational reference for future studies aimed at exploring the evolution and transformative impact of this technology.

Findings

The analyses carried out have shown the impact and strong evolution of additive manufacturing as a field of knowledge at the world level, both from the point of view of manufacturing processes and from the point of view of materials science. In addition, some differences have been detected depending on the country. As a result of the meta-analysis, four different subtopics have been detected: one of them directly related to the use of recently developed Industry 4.0 technologies in additive manufacturing. The results provide a starting point for prospective studies to understand the evolution and disruption of this technology.

Originality/value

The paper is original and is based on data systematically extracted from scientific databases. Then, a specific methodology based on different advanced tools was applied for scientometric evaluation and meta-analysis.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2023

Mustafa S. Al-Khazraji, S.H. Bakhy and M.J. Jweeg

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and…

Abstract

Purpose

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and limitations. The other purpose of this paper is to familiarize the researchers with the available developments in manufacturing sandwich structures.

Design/methodology/approach

The most recent research articles in the field of manufacturing various composite sandwich structures were reviewed. The review process started by categorizing the available sandwich manufacturing techniques into nine main categories according to the method of production and the equipment used. The review is followed by outlining some automatic production concepts toward composite sandwich automated manufacturing. A brief summary of the sandwich manufacturing techniques is given at the end of this article, with recommendations for future work.

Findings

It has been found that several composite sandwich manufacturing techniques were proposed in the literature. The diversity of the manufacturing techniques arises from the variety of the materials as well as the configurations of the final product. Additive manufacturing techniques represent the most recent trend in composite sandwich manufacturing.

Originality/value

This work is valuable for all researchers in the field of composite sandwich structures to keep up with the most recent advancements in this field. Furthermore, this review paper can be considered as a guideline for researchers who are intended to perform further research on composite sandwich structures.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 March 2023

Md Maruf Hossan Chowdhury, Moira Scerri, Sajib Shahriar and Katrina Skellern

Drawing on a dynamic capability view, this study develops a decision support model that determines the most suitable configuration of strategies and challenges to adopt additive…

Abstract

Purpose

Drawing on a dynamic capability view, this study develops a decision support model that determines the most suitable configuration of strategies and challenges to adopt additive manufacturing (AM) to expedite digital transformation and performance improvement of the surgical and medical device (SMD) supply chain.

Design/methodology/approach

To investigate the research objective, a multi-method and multi-study research design was deployed using quality function deployment and fuzzy set qualitative comparative analysis.

Findings

The study finds that only resilience strategies or negation (i.e. minimisation) of challenges are not enough; instead, a configuration of resilience strategies and negation of challenges is highly significant in enhancing performance.

Practical implications

SMD supply chain decision-makers will find the decision support model presented in this study as beneficial to be resilient against various challenges in the digital transformation of service delivery process.

Originality/value

This study builds new knowledge of the adoption of AM technology in the SMD supply chain. The decision support model developed in this study is unique and highly effective for fostering digital transformation and enhancing SMD supply chain performance.

Details

Journal of Enterprise Information Management, vol. 37 no. 4
Type: Research Article
ISSN: 1741-0398

Keywords

Access

Year

Last 3 months (49)

Content type

Article (49)
1 – 10 of 49