Search results

1 – 10 of 277
Article
Publication date: 27 January 2023

Mohammad Reza Adlparvar, Morteza Esmaeili and Mohammad Hossein Taghavi Parsa

This paper aims to study the influence of the presence of steel and polyolefin (PO) fibers on the mechanical and durability properties of fiber and hybrid fiber-reinforced…

Abstract

Purpose

This paper aims to study the influence of the presence of steel and polyolefin (PO) fibers on the mechanical and durability properties of fiber and hybrid fiber-reinforced concrete (FRC and HFRC).

Design/methodology/approach

Hooked-end steel fibers having a length of 35 mm were applied at four different fiber content 1.0%, 1.5%, 2.0% and 2.5%, respectively. PO fibers having the length of 45 mm were also replaced with steel fibers at three different fiber content, 0.6%, 0.8% and 1.0%, to provide HFRC. The compressive, indirect tensile and flexural strengths; electrical resistivity; and water absorption were evaluated in this study.

Findings

The results showed that the addition of both steel and PO fibers led to improvements in the mechanical properties of FRC and HFRC. However, the replacement of steel fibers with PO fibers led to a slight loss in mechanical properties. Also, it was concluded that the addition of various types of fibers to concrete decreased both the electrical resistivity and water absorption compared with the control sample. Finally, distance-based approach analysis was used to select the most optimal mix designs.

Originality/value

According to this method, the HFRC specimen including 1.2% of steel and 0.8% of PO fibers was the most optimal mix design among all fiber-reinforced mix designs.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 April 2022

Nadia Talbi, Aghiles Nekmouche, Mohand Ould Ouali, Naceur-Eddine Hannachi and Mohammed Naboussi Farsi

This paper aims to model the performances of frames structures by comparing the predictions of ordinary control concrete (CC) and concretes reinforced by fibers. Two types of…

Abstract

Purpose

This paper aims to model the performances of frames structures by comparing the predictions of ordinary control concrete (CC) and concretes reinforced by fibers. Two types of steel fibers were used in this work, industrial steel fibers (ISF) and tire-reclaimed fibers obtained by cutting virgin steel tire-cord to 50 mm, noticed virgin steel fibers (VSF). In total, 3% of VSF are used. The results obtained in this paper clearly show the contribution of fibers in improving the global and local behavior of the frames structures. VSF gives the same or better overall behavior as the use of industrial fibers for the same percentage of fibers, with the advantage that VSF contributes to the protection of the environment and limit the wastage of steel.

Design/methodology/approach

This work was carried out using the commercial finite element code Abaqus/Explicit. The behavior of the different concretes used in this study was modeled by the concrete damage plasticity (CDP) constitutive law. The methodology adopted to complete this work consisted in identifying, by calibration of the available experimental results with the numerical predictions, the parameters of the corresponding CDP model for each of the concretes used in this work. To this end, the authors have successively identified the CDP parameters for the CC-V (control concrete used by Vecchio and Emara, 1992) used in frame structure (R + 1). Subsequently, the CDP parameters of the CC-T (control concrete used by Tlemat, 2004), the CVSF (concrete with virgin steel fibers) and the CISF-1 (concrete with industrial steel fibers type 1, ISF-1) are identified using the experimental results of beams under bending tests. Once the model parameters were determined for each concrete, the authors conducted a series of simulations to show the benefit of introducing claimed and industrial fibers in frame structure (R + 1) and (R + 2). This approach recommends the use of concrete reinforced with steel fibers, mainly 6% by mass of VSF and ISF-1, in place of ordinary concrete in new construction to increase the resistance of structures and contribute, if applicable, to the protection of the environment.

Findings

The main findings of this study can be summarized by: the strength and ductility of the frames structures made of concrete fiber are significantly increased. The use of tire-reclaimed steel fibers (VSF) gives the same or better overall behavior as the use of industrial fibers. In addition to their good mechanical contribution, the tire-reclaimed fibers contribute to the protection of the environment and limit the wastage of steel. The use of fibers reduces the cracking zones in concrete fiber frames structures. The usefulness of distinguishing the interstory displacement limits set by codes, in particular, uniform building code (UBC-97), for ordinary concretes and concrete reinforced with fibers is addressed.

Originality/value

The contribution of tire-reclaimed and industrial fibers on the strength and ductility of reinforced concrete-frames structures is addressed. The use of tire-reclaimed steel fibers gives the same or better overall behavior as the use of industrial fibers, the tire-reclaimed fibers having the advantage of contributing to the protection of the environment and limiting the wastage of steel. The paper also points to the usefulness of distinguishing the interstory displacement limits set by codes, in particular UBC-97, for ordinary concrete and concrete reinforced with fibers, in accordance to the predictions of the capacity curves.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 July 2023

Yixing Ding, Yanmin Jia, Jiangyue Li, Huiming Li and Xiaobo Zhang

The purpose of this study is to investigate the effects of stud height, stud diameter, ultimate stress of stud and concrete strength on the static behaviour of studs in push-off…

Abstract

Purpose

The purpose of this study is to investigate the effects of stud height, stud diameter, ultimate stress of stud and concrete strength on the static behaviour of studs in push-off tests based on the ductile fracture theory.

Design/methodology/approach

Push-off tests of headed stud shear connectors with different heights and diameters used in concrete of various strengths were designed and implemented. A finite element model was established based on a ductile fracture criterion of ML15 cold-heading steel with stress triaxiality and Lode angle parameter. Based on the results of the parametric study of the numerical model, equations were proposed to evaluate the effect of stud height hs, stud area As, concrete strength fc and stud ultimate strength fsu used in concrete of various strengths on the static behaviour of studs.

Findings

The typical failure phenomenon observed among the test specimens was the fracture of the shank of studs. The microscopic images of the stud fracture surfaces and the verified finite element model indicate that the studs were fractured as a result of the combined action of tension and shear.

Originality/value

A new method for calculating ultimate load Pu and ultimate slip Su is proposed in this paper. In the method, Pu is linearly related to fsu0.2143, As0.7790, hs0.0974, fc0.2065. Su is linearly related to fsu1.078, As0.4681, hs(−0.3135), fc(−0.3480).

Details

International Journal of Structural Integrity, vol. 14 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Jian Lin Han, Zixing Li and Lihua Gong

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart…

Abstract

Purpose

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart garments and other smart wearables such as wrist watches and wrist bands. The purpose of this study is to fill this knowledge gap by discussing issues regarding smart shoe sensing technologies, smart shoe sensor placements, factors that affect sensor placements and finally the areas of smart shoe applications.

Design/methodology/approach

Through a review of relevant literature, this study first and foremost attempts to explain what constitutes a smart shoe and subsequently discusses the current trends in smart shoe applications. Discussed in this study are relevant sensing technologies, sensor placement and areas of smart shoe applications.

Findings

This study outlined 13 important areas of smart shoe applications. It also uncovered that majority of smart shoe functionality are physical activity tracking, health rehabilitation and ambulation assistance for the blind. Also highlighted in this review are some of the bottlenecks of smart shoe development.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review paper focused on smart shoe applications, and therefore serves as an apt reference for researchers within the field of smart footwear.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 December 2021

Amit Deb Nath, Md. Ikramul Hoque, Shuvo Dip Datta and Fahim Shahriar

The current study mainly focuses on the effect of varying diameter recycled steel fibers (RSF) on mechanical properties of concrete prepared with 25 and 50% of recycled coarse…

Abstract

Purpose

The current study mainly focuses on the effect of varying diameter recycled steel fibers (RSF) on mechanical properties of concrete prepared with 25 and 50% of recycled coarse aggregate (RCA) as well as 100% natural aggregate (NA). Two types of RSF with 0.84 mm and 1.24 mm diameter having 30 mm length were incorporated into normal and recycled aggregate concrete (RAC).

Design/methodology/approach

The fresh behavior, compressive, splitting tensile, flexural strengths and modulus of elasticity of all the mixes were investigated to evaluate the mechanical properties of RACs. In addition, specimen crack and testing co-relation were analyzed to evaluate fiber response in the RAC.

Findings

According to the experimental results, it was observed that mechanical properties decreased with the increment replacement of NA by RCA. However, the RSF greatly improves the mechanical properties of both normal concrete and RACs. Moreover, mixes containing 1.24 mm diameter RSF had a more significant positive impact on mechanical properties than mixes containing 0.84 mm diameter RSF. The 0.84 mm and 1.24 mm RSF addition improved the mixes' compressive, splitting tensile and flexural strength by 10%–19%, 19%–30% and 3%–11%, respectively when compared to the null fiber mix. Therefore, based on the mechanical properties, the 1.24 mm diameter of RSF with 25% replacement of RCA was obtained as an optimum solution in terms of performance improvement, environmental benefit and economic cost.

Practical implications

The practice of RCA in construction is a long-term strategy for reducing natural resource extraction and the negative ecological impact of waste concrete.

Originality/value

This is the first study on the effects of varying size (0.84 mm and 1.24 mm diameter) RSF on the mechanical properties of RAC. Additionally, varying sizes of RSF and silica fume added a new dimension to the RAC.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 24 May 2023

Vijaya Prasad Burle, Tattukolla Kiran, N. Anand, Diana Andrushia and Khalifa Al-Jabri

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete…

Abstract

Purpose

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.

Design/methodology/approach

In this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.

Findings

The test results concluded that concrete with BF showed a lower loss in CS after 925 °C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 °C and 1029 °C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.

Originality/value

Performance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 21 July 2023

Jinhua Sun

Steel-reinforced concrete-filled steel tubular (SRCFST) columns have been increasingly popular in engineering practice for the columns' excellent seismic and fire performance…

Abstract

Purpose

Steel-reinforced concrete-filled steel tubular (SRCFST) columns have been increasingly popular in engineering practice for the columns' excellent seismic and fire performance. Significant design progress guidance has been made through continuous numerical and experimental research in recent years. This paper tested and analysed the residual loading capacity of SRCFST columns under axial loading after experiencing non-uniform ISO-834 standard fire.

Design/methodology/approach

The experimental research covered the main parameter of heating conditions, 1-side and 2-side fire, through two specimens. Two specimens were heated and loaded simultaneously in the furnace for 240 min. After cooling, the columns were moved to the hydraulic loading system and loaded to failure to determine the columns' residual capacity.

Findings

The experimental results indicated that the non-uniform heating area plays an essential role in the overall performance of SRCFST columns, the increasing heating area of columns results in lower residual loading capacity and stiffness. The SRCFST columns still had a high loading capacity after heating and loading in the fire.

Originality/value

The comparison of experimental data against design results showed that the design method generated a 16% safety margin for S2H4 and a 39% safety margin for S1H4.

Details

Journal of Structural Fire Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 20 December 2022

Hamsavathi Kannan, Soorya Prakash K. and Kavimani V.

The aim of the work is to investigate structural behaviour of reinforced concrete (RF) beam retrofitted with basalt fibre (BF) fabric. The incorporation of BF showed enhancement…

Abstract

Purpose

The aim of the work is to investigate structural behaviour of reinforced concrete (RF) beam retrofitted with basalt fibre (BF) fabric. The incorporation of BF showed enhancement in bending strength, to increase confinement and to repair damages caused by cracking. In the early decades, using BF for composite materials shaped BF as an excellent physical substance with necessary mechanical properties, highlighting the significant procedures ability.

Design/methodology/approach

Specimens were casted with U-wrapped BF and then evaluated based on flexural tests. In the test carried over for flexural fortifying assessment, BF reinforcements demonstrated a definitive quality improvement in the case of the subjected control sample; ultimately, the end impacts depend upon the applied test parameters. From the outcomes introduced in this comparison, for the double-wrapped sample, the modifications improved by 12% than that of the single-wrapped beam, which is identified to subsist for a better strengthening of new-age retrofitting designs.

Findings

The current research deals with the retrofitting of RC beam by conducting a comparative experiment on wrapping of BF (single or double BF wrapping) in improving the mechanical behavior of concrete.

Originality/value

It can be shown from the experimental results that increasing the number of layers has significant effect on basalt strengthened beams.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 November 2022

Nursyamsi Nursyamsi, Johannes Tarigan, Muhammad Aswin, Badorul Hisham Abu Bakar and Harianto Hardjasaputra

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading…

Abstract

Purpose

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading, inadequate design, poor work execution, fire, storm, earthquakes etc. Therefore, repairing and strengthening is one way to improve damaged structures, so that they can be reutilized. In this research, the use of an ultra high-performance fibre-reinforced concrete (UHPFRC) layer is proposed as a strengthening material to rehabilitate damaged-RC beams. Different strengthening schemes pertaining to the structural performance of the retrofitted RC beams due to the flexural load were investigated.

Design/methodology/approach

A total of 13 normal RC beams were prepared. All the beams were subjected to a four-point flexural test. One beam was selected as the control beam and tested to failure, whereas the remaining beams were tested under a load of up to 50% of the ultimate load capacity of the control beam. The damaged beams were then strengthened using a UHPFRC layer with two different schemes; strip-shape and U-shape schemes, before all the beams were tested to failure.

Findings

Based on the test results, the control beam and all strengthened beams failed in the flexural mode. Compared to the control beam, the damaged-RC beams strengthened using the strip-shape scheme provided an increase in the ultimate load capacity ranging from 14.50% to 43.48% (or an increase of 1.1450 to 1.4348 times), whereas for the U-shape scheme beams ranged from 48.70% to 149.37% (or an increase of 1.4870–2.4937 times). The U-shape scheme was more effective in rehabilitating the damaged-RC beams. The UHPFRC mixtures are workable, as well easy to place and cast into the formworks. Furthermore, the damaged-RC beams strengthened using strip-shape scheme and U-shape scheme generated ductility factors of greater than 4 and 3, respectively. According to Eurocode8, these values are suitable for seismically active regions. Therefore, the strengthened damaged-RC beams under this study can quite feasibly be used in such regions.

Research limitations/implications

Observations of crack patterns were not accompanied by measurements of crack widths due to the unavailability of a microcrack meter in the laboratory. The cost of the strengthening system application were not evaluated in this study, so the users should consider wisely related to the application of this method on the constructions.

Practical implications

Rehabilitation of the damaged-RC beams exhibited an adequate structural performance, where all strengthened RC beams fail in the flexural mode, as well as having increment in the failure load capacity and ductility. So, the used strengthening system in this study can be applied for the building construction in the seismic regions.

Social implications

Aside from equipment, application of this strengthening system need also the labours.

Originality/value

The use of sand blasting on the surfaces of the damaged-RC beams, as well as the application of UHPFRC layers of different thicknesses and shapes to strengthen the damaged-RC beams, provides a novel innovation in the strengthening of damaged-RC beams, which can be applicable to either bridge or building constructions.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 22 May 2023

Pandimani

The ultimate capacity and ductility behavior of a reinforced concrete (RC) beam generally depends on its constituent material properties. This study aims to use ANSYS to…

Abstract

Purpose

The ultimate capacity and ductility behavior of a reinforced concrete (RC) beam generally depends on its constituent material properties. This study aims to use ANSYS to accentuate the nonlinear parametric finite element (FE) simulations of RC sections under monotonic loading.

Design/methodology/approach

The concrete matrix and steel reinforcement are the primary constituent materials of RC beams. The material properties such as tensile reinforcement area, tensile bars yield strength, concrete compressive strength and strain rate in tensile reinforcement at nominal strength have significantly influenced the ultimate response of RC beams. Therefore, these intensive parameters are considered in this study to ascertain their effect on the RC beam's ultimate behavior. The nonlinear response up to the ultimate load capacity and the crack evolutions of RC beams are predicted efficiently.

Findings

The parametric study reveals that increasing the tensile steel reinforcements (from Ast = 213–857 mm2) significantly improves the ultimate load capacity by 229% and yield deflections by 20%. However, it declines the ultimate deflection by 47% and ductility by 56% substantially. Varying the strain limit (?tn = 0.010–0.0015) of tensile reinforcement has proficiently increased the ultimate load-resisting capacity by 20%, whereas the ductility declined by 62%. When the concrete strength increases (from fck = 25–65 MPa), the cracking load increases profoundly by 51%, whereas the ultimate capacity has found an insignificant effect.

Originality/value

The load-deflection response plots extracted from the proposed numerical model exhibit satisfactory accuracy (less than 9% deviation) against the experimental curves available in the literature, which emphasizes the proficiency of the proposed FE model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Access

Year

Last 12 months (277)

Content type

Article (277)
1 – 10 of 277