Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 9 May 2024

Yanhao Sun, Tao Zhang, Shuxin Ding, Zhiming Yuan and Shengliang Yang

In order to solve the problem of inaccurate calculation of index weights, subjectivity and uncertainty of index assessment in the risk assessment process, this study aims to…

Abstract

Purpose

In order to solve the problem of inaccurate calculation of index weights, subjectivity and uncertainty of index assessment in the risk assessment process, this study aims to propose a scientific and reasonable centralized traffic control (CTC) system risk assessment method.

Design/methodology/approach

First, system-theoretic process analysis (STPA) is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis. Then, to enhance the accuracy of weight calculation, the fuzzy analytical hierarchy process (FAHP), fuzzy decision-making trial and evaluation laboratory (FDEMATEL) and entropy weight method are employed to calculate the subjective weight, relative weight and objective weight of each index. These three types of weights are combined using game theory to obtain the combined weight for each index. To reduce subjectivity and uncertainty in the assessment process, the backward cloud generator method is utilized to obtain the numerical character (NC) of the cloud model for each index. The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system. This cloud model is used to obtain the CTC system's comprehensive risk assessment. The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud. Finally, this process yields the risk assessment results for the CTC system.

Findings

The cloud model can handle the subjectivity and fuzziness in the risk assessment process well. The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.

Originality/value

This study provides a cloud model-based method for risk assessment of CTC systems, which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment, achieving effective risk assessment of CTC systems. It can provide a reference and theoretical basis for risk management of the CTC system.

Details

Railway Sciences, vol. 3 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 4 December 2023

Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Abstract

Purpose

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Design/methodology/approach

Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.

Findings

The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.

Originality/value

The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 27 July 2023

Teresa García-Valderrama, Jaime Sanchez-Ortiz and Eva Mulero-Mendigorri

The objective of this work is to demonstrate the relationships between the two main processes of research and development (R&D) activities: the knowledge generation phase (KPP…

1033

Abstract

Purpose

The objective of this work is to demonstrate the relationships between the two main processes of research and development (R&D) activities: the knowledge generation phase (KPP) and the knowledge commercialization, or transfer, phase (KCP), in a sector that is intensive in this type of activity, such as the pharmaceutical sector. In addition, within the framework of the general objective of this work, the authors propose two other objectives: (1) make advances in network efficiency measurement models, and (2) determine the factors associated with efficiency in the KPP and in the KCP in companies of the pharmaceutical sector in Spain.

Design/methodology/approach

A Network Data Envelopment Analysis (NDEA) model (Färe and Grosskopf, 2000) with categorical variables (Lee et al., 2020; Yeh and Chang, 2020) has been applied, and a sensitivity analysis of the obtained results has been performed through a DEA model of categorical variables, in accordance with the work of Banker and Morey (1986), to corroborate the results of the proposed model. The sample is made up of 77 companies in the pharmaceutical sector in Spain.

Findings

The results obtained point to a greater efficiency of pharmaceutical companies in the KPP, rather than in the KCP. Furthermore, the study finds that 1) alliances between companies have been the accelerating factors of efficiency in the KCP (but patents have slowed this down the most); 2) the quality of R&D and the number of R&D personnel are the factors that most affect efficiency in the KPP; and 3) the quality of R&D again, the benefits obtained and the position in the market are the factors that most affect efficiency in the KCP.

Originality/value

The authors have not found studies that show whether the efficiency obtained by R&D-intensive companies in the KPP phase is related to better results in terms of efficiency in the KCP phase. No papers have been found that analyse the role of alliances between R&D-intensive companies and patents, as agents that facilitate efficiency in the KCP phase, covering the gap in the research on both problems. Notwithstanding, this work opens up a research path which is related to the improvement of network efficiency models (since it includes categorical variables) and the assessment of the opinions of those who are responsible for R&D departments; it can be applied to decision-making on the aspects to improve efficiency in R&D-intensive companies.

Details

Management Decision, vol. 61 no. 13
Type: Research Article
ISSN: 0025-1747

Keywords

Open Access
Article
Publication date: 14 February 2024

Chao Lu and Xiaohai Xin

The promotion of autonomous vehicles introduces privacy and security risks, underscoring the pressing need for responsible innovation implementation. To more effectively address…

Abstract

Purpose

The promotion of autonomous vehicles introduces privacy and security risks, underscoring the pressing need for responsible innovation implementation. To more effectively address the societal risks posed by autonomous vehicles, considering collaborative engagement of key stakeholders is essential. This study aims to provide insights into the governance of potential privacy and security issues in the innovation of autonomous driving technology by analyzing the micro-level decision-making processes of various stakeholders.

Design/methodology/approach

For this study, the authors use a nuanced approach, integrating key stakeholder theory, perceived value theory and prospect theory. The study constructs a model based on evolutionary game for the privacy and security governance mechanism of autonomous vehicles, involving enterprises, governments and consumers.

Findings

The governance of privacy and security in autonomous driving technology is influenced by key stakeholders’ decision-making behaviors and pivotal factors such as perceived value factors. The study finds that the governmental is influenced to a lesser extent by the decisions of other stakeholders, and factors such as risk preference coefficient, which contribute to perceived value, have a more significant influence than appearance factors like participation costs.

Research limitations/implications

This study lacks an investigation into the risk sensitivity of various stakeholders in different scenarios.

Originality/value

The study delineates the roles and behaviors of key stakeholders and contributes valuable insights toward addressing pertinent risk concerns within the governance of autonomous vehicles. Through the study, the practical application of Responsible Innovation theory has been enriched, addressing the shortcomings in the analysis of micro-level processes within the framework of evolutionary game.

Details

Asia Pacific Journal of Innovation and Entrepreneurship, vol. 18 no. 2
Type: Research Article
ISSN: 2071-1395

Keywords

Open Access
Article
Publication date: 28 February 2023

Onyeka John Chukwuka, Jun Ren, Jin Wang and Dimitrios Paraskevadakis

Unforeseen events can disrupt the operational process and negatively impact emergency resources optimization and its supply chain. A limited number of studies have addressed risk…

2982

Abstract

Purpose

Unforeseen events can disrupt the operational process and negatively impact emergency resources optimization and its supply chain. A limited number of studies have addressed risk management issues in the context of emergency supply chains, and this existing research lacks inbuilt and practical techniques that can significantly affect the reliability of risk management outcomes. Therefore, this paper aims to identify and practically analyze the specific risk factors that can most likely disrupt the normal functioning of the emergency supply chain in disaster relief operations.

Design/methodology/approach

This paper has used a three-step process to investigate and evaluate risk factors associated with the emergency supply chain. First, the study conducts a comprehensive literature review to identify the risk factors. Second, the research develops a questionnaire survey to validate and classify the identified risk factors. At the end of this step, the study develops a hierarchical structure. Finally, the research investigates the weighted priority of the validated risk factors using the fuzzy-analytical hierarchy process (FAHP) methodology. Experts were required to provide subjective judgments.

Findings

This paper identified and validated 28 specific risk factors prevalent in emergency supply chains. Based on their contextual meanings, the research classified these risk factors into two main categories: internal and external risk factors; four subcategories: demand, supply, infrastructural and environmental risk factors; and 11 risk types: forecast, inventory, procurement, supplier, quality, transportation, warehousing, systems, disruption, social and political risk factors. The most significant risk factors include war and terrorism, the absence of legislative rules that can influence and support disaster relief operations, the impact of cascading disasters, limited quality of relief supplies and sanctions and constraints that can hinder stakeholder collaboration. Therefore, emergency supply chain managers should adopt appropriate strategies to mitigate these risk factors.

Research limitations/implications

This study will contribute to the general knowledge of risk management in emergency supply chains. The identified risk factors and structural hierarchy taxonomic diagram will provide a comprehensive risk database for emergency supply chains.

Practical implications

The research findings will provide comprehensive and systemic support for respective practitioners and policymakers to obtain a firm understanding of the different risk categories and specific risk factors that can impede the effective functioning of the emergency supply chain during immediate disaster relief operations. Therefore, this will inform the need for the improvement of practices in critical aspects of the emergency supply chain through the selection of logistics and supply chain strategies that can ensure the robustness and resilience of the system.

Originality/value

This research uses empirical data to identify, categorize and validate risk factors in emergency supply chains. This study contributes to the theory of supply chain risk management. The study also adopts the fuzzy-AHP technique to evaluate and prioritize these risk factors to inform practitioners and policymakers of the most significant risk factors. Furthermore, this study serves as the first phase of managing risk in emergency supply chains since it motivates future studies to empirically identify, evaluate and select effective strategies that can eliminate or minimize the effects of these risk factors.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 13 no. 3
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 9 October 2023

Mingyao Sun and Tianhua Zhang

A real-time production scheduling method for semiconductor back-end manufacturing process becomes increasingly important in industry 4.0. Semiconductor back-end manufacturing…

Abstract

Purpose

A real-time production scheduling method for semiconductor back-end manufacturing process becomes increasingly important in industry 4.0. Semiconductor back-end manufacturing process is always accompanied by order splitting and merging; besides, in each stage of the process, there are always multiple machine groups that have different production capabilities and capacities. This paper studies a multi-agent based scheduling architecture for the radio frequency identification (RFID)-enabled semiconductor back-end shopfloor, which integrates not only manufacturing resources but also human factors.

Design/methodology/approach

The architecture includes a task management (TM) agent, a staff instruction (SI) agent, a task scheduling (TS) agent, an information management center (IMC), machine group (MG) agent and a production monitoring (PM) agent. Then, based on the architecture, the authors developed a scheduling method consisting of capability & capacity planning and machine configuration modules in the TS agent.

Findings

The authors used greedy policy to assign each order to the appropriate machine groups based on the real-time utilization ration of each MG in the capability & capacity (C&C) planning module, and used a partial swarm optimization (PSO) algorithm to schedule each splitting job to the identified machine based on the C&C planning results. At last, we conducted a case study to demonstrate the proposed multi-agent based real-time production scheduling models and methods.

Originality/value

This paper proposes a multi-agent based real-time scheduling framework for semiconductor back-end industry. A C&C planning and a machine configuration algorithm are developed, respectively. The paper provides a feasible solution for semiconductor back-end manufacturing process to realize real-time scheduling.

Details

IIMBG Journal of Sustainable Business and Innovation, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8500

Keywords

Open Access
Article
Publication date: 31 May 2023

Xiaojie Xu and Yun Zhang

For policymakers and participants of financial markets, predictions of trading volumes of financial indices are important issues. This study aims to address such a prediction…

Abstract

Purpose

For policymakers and participants of financial markets, predictions of trading volumes of financial indices are important issues. This study aims to address such a prediction problem based on the CSI300 nearby futures by using high-frequency data recorded each minute from the launch date of the futures to roughly two years after constituent stocks of the futures all becoming shortable, a time period witnessing significantly increased trading activities.

Design/methodology/approach

In order to answer questions as follows, this study adopts the neural network for modeling the irregular trading volume series of the CSI300 nearby futures: are the research able to utilize the lags of the trading volume series to make predictions; if this is the case, how far can the predictions go and how accurate can the predictions be; can this research use predictive information from trading volumes of the CSI300 spot and first distant futures for improving prediction accuracy and what is the corresponding magnitude; how sophisticated is the model; and how robust are its predictions?

Findings

The results of this study show that a simple neural network model could be constructed with 10 hidden neurons to robustly predict the trading volume of the CSI300 nearby futures using 1–20 min ahead trading volume data. The model leads to the root mean square error of about 955 contracts. Utilizing additional predictive information from trading volumes of the CSI300 spot and first distant futures could further benefit prediction accuracy and the magnitude of improvements is about 1–2%. This benefit is particularly significant when the trading volume of the CSI300 nearby futures is close to be zero. Another benefit, at the cost of the model becoming slightly more sophisticated with more hidden neurons, is that predictions could be generated through 1–30 min ahead trading volume data.

Originality/value

The results of this study could be used for multiple purposes, including designing financial index trading systems and platforms, monitoring systematic financial risks and building financial index price forecasting.

Details

Asian Journal of Economics and Banking, vol. 8 no. 1
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 8 September 2022

Muhammad Ashraf Fauzi, Mohd Hafiz Hanafiah and Velan Kunjuraman

This study integrates the theory of planned behaviour (TPB) and value-belief-norm (VBN) theory to investigate tourists' intention and behaviour to visit green hotels in Malaysia.

8528

Abstract

Purpose

This study integrates the theory of planned behaviour (TPB) and value-belief-norm (VBN) theory to investigate tourists' intention and behaviour to visit green hotels in Malaysia.

Design/methodology/approach

A total of 160 valid questionnaire responses were collected via an online survey. The partial least square–structural equation modelling (PLS-SEM) technique was utilised to assess the study framework and the hypothesised relationship.

Findings

The study's results confirmed that tourists' intention to stay at a green hotel is directly influenced by their subjective norms and perceived behavioural control. Besides, the study confirms the insignificant relationship between green trust, personal norms and tourists' stay intention. On the other hand, perceived morals, responsibility, willingness to pay more and perceived consumer effectiveness were significant in explaining the customer's subjective norms, personal norms and perceived behaviour control.

Research limitations/implications

The hotel industry may benefit from this empirical outcome to devise effective marketing strategies for retaining their customers, particularly in rejuvenating the impact of the COVID-19 pandemic on the industry.

Practical implications

This study provides valuable practical implications for green hotel operators to develop effective strategies to attract tourists to green hotel visits.

Originality/value

This study is the first to integrate the extended TPB and VBN theory to understand tourist intention to visit a green hotel. Notably, the extended TPB and VBN theory was practical and helpful in predicting tourist intention to visit a green hotel.

Details

Journal of Tourism Futures, vol. 10 no. 2
Type: Research Article
ISSN: 2055-5911

Keywords

Access

Only Open Access

Year

Last 12 months (1345)

Content type

Article (1345)
1 – 10 of over 1000