
A real-time production scheduling
method for RFID-enabled

semiconductor back-end shopfloor
environment in industry 4.0

Mingyao Sun and Tianhua Zhang
College of Business Administration, Capital University of Economics and Business,

Beijing, China

Abstract

Purpose – A real-time production scheduling method for semiconductor back-end manufacturing process
becomes increasingly important in industry 4.0. Semiconductor back-end manufacturing process is always
accompanied by order splitting and merging; besides, in each stage of the process, there are always multiple
machine groups that have different production capabilities and capacities. This paper studies a multi-agent
based scheduling architecture for the radio frequency identification (RFID)-enabled semiconductor back-end
shopfloor, which integrates not only manufacturing resources but also human factors.
Design/methodology/approach – The architecture includes a task management (TM) agent, a staff
instruction (SI) agent, a task scheduling (TS) agent, an information management center (IMC), machine group
(MG) agent and a production monitoring (PM) agent. Then, based on the architecture, the authors developed a
scheduling method consisting of capability & capacity planning and machine configuration modules in the
TS agent.
Findings – The authors used greedy policy to assign each order to the appropriate machine groups based on
the real-time utilization ration of each MG in the capability & capacity (C&C) planning module, and used a
partial swarm optimization (PSO) algorithm to schedule each splitting job to the identified machine based on
the C&C planning results. At last, we conducted a case study to demonstrate the proposed multi-agent based
real-time production scheduling models and methods.
Originality/value – This paper proposes a multi-agent based real-time scheduling framework for
semiconductor back-end industry. A C&C planning and a machine configuration algorithm are developed,
respectively. The paper provides a feasible solution for semiconductor back-end manufacturing process to
realize real-time scheduling.

Keywords Real-time scheduling, Multi-agent, Capability & capacity planning, Machine configuration,

Semiconductor

Paper type Research paper

1. Introduction
The semiconductor manufacturing process includes wafer fabrication, probing, assembly
and final testing steps. The back-end process of semiconductor manufacturing consists of
steps that follows water fabrication (Guo, Chiang, & Pai, 2007; Tu & Chen, 2009; Lin & Chen,
2015). Because semiconductor back-endmanufacturing process usually operates with a short
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lead-time and absorbs the effect of lead time variance in the front-end process, the back-end
manufacturing environment is of highly uncertainties and dynamics (Lin & Chen, 2015; Fu,
Askin, Fowler, & Zhang, 2015). A typical back-end manufacturing process consists of
multiple stages, including die bond (DB), wire bond (WB), molding, marking and final vision.
Among these stages, die bond, wire bond and molding, are the potential bottlenecks of the
manufacturing process (Lin & Chen, 2015). On-time delivery is considered as one of the most
important performance indicators for semiconductor industries. Hence, how to develop a real-
time scheduling framework to minimize the total weighted tardiness is critical for business
success of semiconductor industries in industry 4.0.

The production process of back-end shopfloor belongs to hybrid flow shop (HFS)
environment with the following features: (1) Machine heterogeneity. In order to satisfy the
precision requirements of different orders, there are multiple types of machines in each back-
end manufacturing stage (Lin & Chen, 2015; Lin, Chen, Chiu, & Fang, 2013). The same type
machines in one stage are referred to as “machine group”, while all types of machines in one
stage are referred to as “machine family” in our study; (2) Order splitting andmerging during
the production. DB process picks the die from wafers and put it on the substrate, after which
the substrate is placed into a magazine (Lin & Chen, 2015; Park, Ahn, & Hur, 2018).
Magazines are carriers that transfer the jobs from one stage to the next stage. The process is
repeated until the quantity requirement of one magazine is satisfied. As a result, the order is
split into jobs for theWBandmolding stages. All of the jobs split from the order are processed
on the same machine group at each stage and are merged after completion. Hence, the flow
time of the order begins from the order releasing and ends when all subsequent jobs are
completed. The order splitting andmerging makes the orders scheduling be more complex in
semiconductor back-end industries (Hung, Liang, & Chen, 2013; Chiu, Lai, & Chen, 2023; Lin
& Chen, 2015).

Despite of the significant research progress in semiconductor back-end shopfloor
scheduling (e.g. Lin & Chen, 2015; Fu et al., 2011; Wang, Lin, Liang, & Wang, 2023), the
following questions are still unsettled:

(1) Development of industry 4.0 technologies (e.g. IIoT, AI and big data analytics) makes
real-time scheduling possible (Ghaleb, Zolfagharinia, & Taghipour, 2020; Zhang,
Tang, Li, Liu, & Zhang, 2021; Hu, Jia, He, Fu, & Liu, 2020). Since the semiconductor
back-end manufacturing process has high degree of dynamics and complexity, it is
essential to develop a real-time scheduling framework for the dynamic decision-
making and adaptive control capabilities to deal with the production changes rapidly.
However, existing literature that focused on the real-time scheduling framework (e.g.
Zhang, Huang, Sun, & Yang, 2014; Negri et al., 2021;Wang, Liu, Ren,Wang, &Wang,
2021) did not characterize the features of semiconductor back-end manufacturing
process, e.g. machine heterogeneity and order splitting and merging.

(2) Few studies pay attention to the machine capability and capacity planning in the
semiconductor back-end manufacturing process. On the one hand, different IC
products require different process precisions in each manufacturing stage; thus
multiple machine capabilities are needed in every stage. On the other hand, there are
multiple types of machine groups that have different capabilities in each stage (Lin &
Chen, 2015). Therefore, to design a real time dispatching architecture and method for
assigning each order to a propermachine group, according to the products’ capability
requirements and spare capacity of the machine groups, has significant value and
wild application foreground.

(3) Due to the lack of workers’ real-time status information capturing, human control and
integration in manufacturing environment is neglected in the current multi-agent
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based scheduling literature, e.g. Zhang et al. (2014) and Renna (2011). Unlike other
resources, human control is always hard to be integrated due to the positive initiative
of human (Lin, Li, Ma, Yao, & Lu, 2020; Marichelvam, Geetha, & Tosun, 2020). In the
semiconductor back-end manufacturing process, the positions of workers are not
fixed because each of them operates with several machines (Wong et al., 2010). Owing
to the development of real-time monitoring and manufacturing execution systems
(MES), it becomes realistic to integrate human factors (e.g. idle or not, technique levels
and capabilities) in the manufacturing process. Nevertheless, to the best of our
knowledge, few studies have focused on designing the real-time scheduling
framework with human factors in the setting of semiconductor back-end industry,
especially considering the features of machine heterogeneity and order splitting and
merging.

To address these problems, this study establishes a flexible and adaptive production
planning and control system for real-time scheduling of semiconductor back-end
manufacturing processes based on the multi-agent systems. We first develop a multi-agent
manufacturing system framework, including a machine group (MG) agent, information
management center (IMC), Task scheduling (TS) agent, staff instruction (SI) agent, task
management (TM) agent and production monitoring (PM) agent. Then, based on the
developed architecture, we propose an order assignment method using greedy policy in the
TD agent according to the machine groups’ capabilities and spare capacities, to optimally
balance the workload of each machine group. Lastly, we develop a global scheduling model
for machine configuration of bottleneck stages to guarantee the delivery accuracy in
semiconductor back-end industries.

The rest of the paper is arranged as follows: Section 2 reviews the relevant literature.
Section 3 establishes the multi-agent based scheduling framework of the semiconductor
back-end manufacturing process. Section 4 develops the C&C method and machine
configuration algorithms in the TS agent. Section 5 uses a case study to illustrate our
framework and models intuitively. Section 6 concludes the study and presents the future
research directions.

2. Literature review
Three streams of literature are relevant to our study: those related to (1) multi-agent systems
in manufacturing environment; (2) scheduling methods of HFS; and (3) work allocation in
semiconductor back-endmanufacturing process. In this section, we briefly review the studies
related to these streams and discuss how our study differs from them to highlight our
contributions.

Our research is first related to studies on multi-agent systems in manufacturing
environment. As a branch of artificial intelligence (AI), agent technology has been broadly
adopted and developed in manufacturing applications (Zhang et al., 2014; Kamali,
Banirostam, Motameni, & Teshnehlab, 2023; Popper & Ruskowski, 2022). Zhang and
Wang (2016) developed a multi-agent based hierarchical collaborative scheduling system,
which outperforms the FCFS rule in terms of daily movement and machine utilization. Chol
and Gun (2023) studied amulti-agent based schedulingmethod for tandem automated guided
vehicle systems. Mishra, Singh, Kumari, Govindan, and Ali (2016) developed a self-reactive
cloud-based multi-agent architecture for distributed manufacturing system, which can help
manufacturing industries to establish real-time information exchange between the
autonomous agents, clients, suppliers and manufacturing unit. Wang, Zhang, Zhang, Cui,
and Zhang (2022) proposed an independent double deep-q-network-based multi-agent
reinforcement learning (MA-IDDQN) approach to produce an adaptive rule for batch forming
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and scheduling for a two-stage HFS scheduling. Our paper differs from these studies in that
we consider a C&C allocation agent for MGs in each manufacturing stage. Moreover, despite
the machines and materials in the shopfloor, our multi-agent based manufacturing system
also integrates the human factors.

Our research is also related to the literature on scheduling methods of HFS. Semiconductor
back-endmanufacturing process is a typical case of HFS (Lin&Chen, 2015). Ruiz andV�azquez-
Rodr�ıguez (2010) reviewed the heuristic and metaheuristic methods that have been proposed
for scheduling of HFS. In recent years, Shao, Shao, and Pi (2020) combined the features of
distributed flow shop scheduling and parallel machine scheduling to develop a solution for the
distributed hybrid flowshop scheduling problem (DHFSP) with makespan criterion. Cai, Lei,
Wang, and Wang (2023) developed reinforcement learning method for distributed hybrid
flowshop scheduling problem (HFSP). Lu, Liu, Zhang, and Yin (2022) studied a Pareto-based
hybrid iterated greedy algorithm for aHFSPwith objectives ofminimization themakespan and
total energy consumption. Similarly, Zheng, Zhou, Xu, and Chen (2020) also studied the
schedulingmethod for HFSwith energy consumption consideration. Gheisariha, Tavana, Jolai,
and Rabiee (2021) developed a simulation–optimization model for solving multi-objective HFS
scheduling problem with rework and transportation.

Finally, our research is also related to studies on work allocation in semiconductor
back-end manufacturing process. Weigert, Klemmt, and Horn (2009) designed heuristic
algorithms for simulation-based scheduling of a semiconductor back-end facility with the
consideration of multiple objectives. Kress and M€uller (2022) presented decomposition-
based heuristic solution approaches and a mixed integer program to minimize the total
weighted tardiness for a semiconductor final-test scheduling problem, by considering
human operators with setup operations. Deenen, Adan, and Akcay (2020) studied the
problem of allocating semiconductor wafers to customer orders with the objective of
minimizing the overallocation prior to assembly, by considering that a wafer can contain
dies from several different die classes. Fu et al. (2011) developed a new mixed-integer-
linear-programming (MILP) model for the batch production scheduling of a semiconductor
back-end facility with serial production stages. Wang et al. (2023) presented a multi-
subpopulation parallel computing genetic algorithm for the semiconductor packaging
scheduling problem with auxiliary resource constraints. Our paper is most related to Lin
and Chen (2015), who presented a simulation–optimization approach for a hybrid
semiconductor back-end manufacturing process scheduling problem by considering job
splitting and merging. While also focusing on order splitting and merging, we aim to
develop a multi-agent based real-time scheduling framework for semiconductor back-end
manufacturing process. In addition, capability and capacity planning is also involved in
our study.

In summary, (1) different from most of previous studies on multi-agent based
scheduling systems, we involved a C&C planning allocation agent and a human control
agent to suit the semiconductor back-end manufacturing process; (2) Unlike previous
studies of HFS scheduling, we proposed a new coding mechanism for partial swarm
optimization (PSO) algorithm that involves both MG and machine configuration decisions;
and (3) We make the first attempt to combine order splitting and merging and HFS
scheduling, which is more consistent with the semiconductor back-end manufacturing
process than other studies.

3. Multi-agent based semiconductor back-end manufacturing environment
3.1 Multi-agent system architecture
The overall architecture of the multi-agent based real-time scheduling system for the
semiconductor back-end manufacturing process is shown in Figure 1. The proposed
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architecture includes a TM agent, a SI agent, a TS agent, an IMC, a MG agent and aPM agent.
First, the dynamic manufacturing data (e.g. resources, staff and equipment) will be captured
by the auto ID technologies, such as radio frequency identification (RFID) and Bluetooth.
Then, the information management agent will analyze these data to extract more valuable
information for further analysis. Lastly, the tasks could be well scheduled to the identified
machines according to the real-time status of machines. MG agent and PM agent are used to
manage the machines and monitor the manufacturing process. We will illustrate the
architecture and each agent clearly in Section 3.2.

Based on the system architecture in Figure 1, we analyze the information interactive
mechanism of the multi-agent based real-time scheduling method in semiconductor
manufacturing process in Figure 2. First, auto wafer issue system (AWI) releases the order
and a corresponding TM agent will be created and it will send the key information of the
released order to the IMC. Then, IMC will process the information with real-time shopfloor
data to acquire value-added information and provide them to the SI agent and TD agent.
Based on the value-added information, operator and sub-job scheduling results will be
transferred to MG agent, respectively, by SI agent and TD agent to instruct the production
process. PM agent will track and monitor the manufacturing process whole time, when
disturbance happens, SI agent will be informed and repair/maintenance activities will be
arranged.

3.2 Multi-agent models
The multi-agent system consists of five parts, which are briefly described as follows:

(1) Task management (TM) agent

Auto Wafer Issue (AWI)

TM agent 1 TM agent 2 …… TM agent n

Staff Instruction agent

Machine Group
agent 1

Machine Group
agent 2

Machine Group
agent n……

Carrier AGV Material …… Auto-ID device

Task scheduling agent
Capability & capacity evaluation Sub-job assignment

Production
Monitoring

Agent

Information
Management

Centre

Source(s): Figure by authors

Figure 1.
System architecture
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A TM agent is created once an order is issued by AWI, which is an important industrial
application widely used in semiconductor back-end industry. The TM agent records the key
information of the order, e.g. priority, quantity, requiredmachine capability in each stage and
due date. The TM agent for the order will be cancelled by the AWI as soon as the order
finishes all the manufacturing processes.

(2) Staff instruction (SI) agent

“Unmanned shopfloor” becomes increasingly achievable because of the development of
mobile network andwearable devices. Hence, SI agent is aimed for integrating human factors
into the manufacturing system but keeping operators away from the shopfloor by the use of
industrial hardware and software, e.g. central computer, smart glasses, mobile internet.
Service-oriented architecture (SOA) is adopted in our architecture for the real-time and multi-
source data transmission. The information flow can be described as follows: first, the new
released order information will be formed an XML-based schema that contains all the key
parameters needed to be monitored. Then, based on the SOA, the related XML files will be
sent to the central web server and interact with operator calling system database (OCS DB).
OCS DB stores all the status information of workers, including their ID, profession and skill
levels, idle or not. Finally, web server will send the optimized results to the appropriate
operators according to their profession and skill levels throughHypertext Transport Protocol
(HTTP), which can helpworkers or shopmanagers make order scheduling decisions, monitor
the production performance or equipment health status. By this way, staffs of the factory are
well integrated into the manufacturing system, which contributes to the decline of error costs
caused by human.

(3) Task scheduling (TS) agent

AWI

TM agent

SI agent

TS agent

IMC

MG agent

PM agent

Release order

Access to data
source

Capturing data

Task
processing
progress

Track and
Monitoring

Capacity
evaluation

result

Scheduling
result

Process
info

Process
info

Operator
assignment

result

Release
scheduling

plan

Disturbance

Repair/maintenance
plan

Source(s): Figure by authors

Figure 2.
Information interactive
mechanism for the
system architecture
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There are two main functions of TS agent, namely C&C evaluation and machine
configuration. The CC evaluation is aimed for assigning each order to the proper machine
family in each stage, according to the real-time data captured by machine agents. The
workflow of this module can be described as follows: first, based on the precision requirement
of the orders, the capability & capacity evaluationmodule will select the appropriate machine
groups and forms a potential set according to machines’ capabilities. Then, the total loading
of the MGs in the potential set will be calculated by the agent, and the MG with least loading
rate will be chosen for the order. The algorithm of the C&C evaluation is shown in section 4.2.

The CC evaluation result will be transferred to the machine configuration module, which
assigns each operation to the identified machine definitely. In order to improve the
satisfaction of customers, delivery accuracy has been considered as one of themost important
performance indicators in semiconductor industries (Lin & Chen, 2015). Thus, we develop a
global optimization mechanism aimed for minimizing the total tardiness and earliness of all
orders in machine configuration module. The detailed algorithm is illustrated in section 4.3.

(4) Information management center (IMC)

IMC consists of two modules, namely data storage module (DSM) and real-time data
processing module (DPM). DSM aims to provide unified data management platform for other
agents. Three main functions are realized: (1) providing data storage for the captured real-
time data and historical data; (2) mapping relation between the physical resources and virtual
resources, e.g. matching RFID tags and shopfloor resources; and (3) providing information
interactive and integration platform for varieties sources of information systems, e.g. ERP,
SCM, CRM andMES. DPM aims to do data analytics based on the DSMmodule, such as data
cleaning, data classification& fusion and information integration, so as to extractmore value-
added information from themassive data generated from shopfloor and information systems.

(5) Machine group (MG) agent

MG agent is developed for real-time data collecting and product recipe management. Real-
time data collecting module is responsible for providing standardmethods for heterogeneous
auto-ID devices so that their perception functions can be easily invoked under a uniform
model. Two standard methods, namely “reading data (Parameter [1], Parameter [i])” and
“writing data (Parameter [1], Parameter [i])” can be found in Zhang, Huang, Sun, and
Yang (2014).

Recipe management is designed to enhance the intelligence of the machine agent. Recipe
means the processing spec of each product in semiconductor industries. Once the machine
agent receives a production task, it can autonomously recognize the type of the product and
release the corresponding recipe. In addition, recipe management can check whether the
current operator is qualified to finish the operation.

(6) Production monitoring (PM) agent

PM agent is adopted to collect real-time information of manufacturing resources to track and
monitor the production process. When any disturbance happens, the PM agent will warn and
identify the root cause of the disturbance and send it to staff agent; based on which, the staff
agent will assign the repair/maintenance task to appropriate operator according to their skills
and levels.

4. Scheduling models and algorithms in TS agent
In this section, an order scheduling rule is designed for production planning in the shopfloor
of semiconductor back-end industries. As described in section 3.3, the whole production
planning process consists of C&C planning and machine configuration steps. C&C planning
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aims to choose an optimal MG according to the real-time status of machines for an order, and
machine configuration aims to sequence each order on the identified machines (including
order splitting andmerging). C&Cplanningmethod andmachine configurationmethod in the
TS agent are discussed, respectively, in the following text. Some terminologies should be
distinguished again before we establish the scheduling model.

Machine group: Refers to a specific machine type that has one or multiple capabilities for
different product precision. Various MGs are existed in each stage.

Product type: Refers to a specific device type which requires specific processing precision
and counter-stochastic processing time caused by machine availability.

Order: Refers to a specific customer demand for a specific product type with a scheduled
release time and due date.

Jobs: An order is spitted into several equivalent jobs. For example, if an order splitting
with the way “1/3”, it means that the order is equally spitted into three jobs.

4.1 Notations and variables
First, we introduce some notations and variables in this paper.

4.1.1 Indices and set.

n: Index of orders, n∈ f1; 2; . . . ;Ng;
s: Index of stages, s∈ f1; 2; 3g. In this text, “1” represents die bond stage, and “2” and “3”
represent wire bond and molding stage, respectively;

ðs; kÞ: MG k in stage s, k∈ f1; 2; . . . ;Ksg, where Ks is the total MG in stage s.

ðs; k;mÞ: Machinemof group k in stage s,m∈ f1; 2; . . . ;Mkg, whereMk is the total number
of machines in group k;

h: Index of order splitting way, h∈ f1; 2; . . . ;Hg, where H depends on the machine
numbers in a MG;

Cs;k: Capability set of MG k in stage s, Cs;k ¼ fC1
s;k;C

2
s;k; . . . ;C

r
s;kg.

4.1.2 Input data.

Qn: Batch quantity of order n, which is measured by total number of magazines;

PTðs;kÞ: Unit processing time of MG k in stage s;

STn0 ;n: Sequence-dependent setup time when order n0 is a direct predecessor of work order
n;

An;s: Processing capability requirement of order n in stage s;

D1: Penalty coefficient when an order is finished after due date;

D2: Penalty coefficient when an order is finished before due date;

DDn: Due date of order n.

4.1.3 Decision variables.

Cn;s;ðs;k;mÞ: Completion time of order n on machine ðs; k;mÞ in stage s;

Xn;s;ðs;k;mÞ: Processing rate of order n on machine ðs; k;mÞ in stage s;
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Yn;s;ðs;k;mÞ ¼
�
1 In stage s; order n is processed onmachine ðs; k;mÞ
0 Otherwise

;

Zn;s;h ¼
�
1 In stage s; order n is processed with order splitting way h
0 Otherwise

;

On;n0;s;ðs;k;mÞ ¼
�
1 In stage s; order n is processed before order n0 on samemachine

0 Otherwise
:

4.2 Capability and capacity planning with greedy policy in TS agent
In semiconductor back-end shopfloor, there are manyMGs in each stage andmachine groups
have various capabilities that are suitable to the precision requirements of different orders.
Hence, C&C planning of these machine groups are critical to the whole scheduling process. A
MG with multiple capabilities is likely to become the bottleneck of the whole production
process. An example of MG selection can be shown in Figure 3. In one manufacturing stage,
machine groups MG1;MG2 and MG3 belong to a machine family. Product P1 requires
machine capability C1 and Product P2 requires machine capability C2, where C1 can be
provided by machine group MG1 and MG2 and C2 can be provided by machine group MG2

and MG3. Because machine group MG2 can process both products, capacity planning is
necessary in case thatMG2 becomes a bottleneck of the whole process. In Figure 3, machine
groupsMG1 andMG2 are selected as potentials of product P1 in this stage. After comparing
the remaining capacities of MG1 and MG2, product P1 is finally assigned to MG1.

P1 P2Product

Required
capability

Potential machine group
with available capability

Identified Machines

Utilization Utilization Utilization

Source(s): Figure by authors

Figure 3.
An example of machine

group selection
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The detailed C&C planning algorithm based on the greedy policy is shown in the following,
where potential represents the set of selectable machine groups (according to machines’
capabilities and products’ capability requirements):

∀s;
For n ¼ 1 to N
Read WIP related data from IMC.
Get An;s from the TM agent
For k ¼ 1 to Ks

Get Cs;k ¼ fC1
s;k;C

2
s;k; . . . ;C

r
s;kg from machine capability set;

If An;s ∈Cs;k

Add MG k to potential MGs set potential;
Calculate the total amount of elements in potential as I;
End if.
For i ¼ 1 to I

Calculate spare capacity of MG i with ACðs;iÞ ¼
Pðs;i;MkÞ

ðs;i;mÞ¼1ACðs;i;mÞ, in which ACðs;i;mÞ is
captured by MA agent;
Calculate available capacity ratio of MG i, ACRðs;iÞ ¼ ACðs;iÞ=TCðs;iÞ, where TCðs;iÞ
represents total capacity of MG i;
Select maxfACRðs;iÞ

��i∈ potentialg as the proper MG for order n;
Next.

4.3 Machine configuration rule in the TS agent
4.3.1 Machine configuration model based on C&C planning result. As mentioned in section 1,
order splitting and merging are the main shopfloor features of semiconductor back-end
industries. The way of order splitting may be stage-dependent. For example, inWB stage, an
order is divided into two jobs and processed on two identified machines; however, in molding
stage, the same order may be divided into three jobs and processed on three identified
machines.

Inmachine configuration stage, C&Cplanning results have been already known. Thus, we
use δðn;sÞ represents for the MG that order n selects in stage s. The objective of the scheduling
problem is to minimize the total weighted earliness/tardiness. Let F1 represent the total
tardiness of all orders and F2 stands for the total earliness, we can get:

F1 ¼ D1

XN
n¼1

max

�
max

1≤ð3;k;mÞ≤Mk

Cn;3;ð3;k;mÞ � DDn; 0

�
; (1)

F2 ¼ D2

XN
n¼1

max

�
DDn � max

1≤ð3;k;mÞ≤Mk

Cn;3;ð3;k;mÞ; 0

�
: (2)

Therefore, the machine configuration model can be written as:

min F ¼ F1 þ F2; (3)

s.t.

C
n;s−1;ðs−1;k0 ;m0Þ þ Qn 3Xn;s;ðs;k;mÞ 3 PTðs;kÞ ≤Cn;s;ðs;k;mÞ∀n; s; m

0
∈

n
1; 2; . . . ;Mδðn;s�1Þ

o
; (4)

m∈

n
1; 2; . . . ;Mδðn;sÞ

o
; (5)
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XH
h¼1

Zn;s;h ¼ 1 ∀n; s; (6)

Xn;s;ðs;k;mÞ ¼ 1PMk

ðs;k;mÞ¼1Yn;s;ðs;k;mÞ
∀n; s; ðs; k;mÞ∈ δðn;sÞ; (7)

XMk

ðs;k;mÞ¼1

Xn;s;ðs;k;mÞ ¼ 1 ∀n; s; ðs; k;mÞ∈ δðn;sÞ; (8)

Cn0 ;s;ðs;k;mÞ ≥Cn;s;ðs;k;mÞ þ Qn0 3Xn; ;s;ðs;k;mÞ 3PTðs;kÞ þ STn0;n � L
�
2� Yn;s;ðs;k;mÞ � Yn0;s;ðs;k;mÞ

�
� L

�
1� On;n0 ;s;ðs;k;mÞ

�
;

(9)

Cn;s;ðs;k;mÞ ≥Cn0 ;s;ðs;k;mÞ þ Qn 3Xn;s;ðs;k;mÞ 3PTðs;kÞ þ STn;n0 � L
�
2� Yn;s;ðs;k;mÞ � Yn0 ;s;ðs;k;mÞ

�
� L3On;n0;s;ðs;k;mÞ;

(10)

Equation (3) states that the objective is to minimize the total tardiness/earliness of all orders.
Equation (4) indicates that finishing time of order n in stage s is equal to or great than the
completion time of order n in stage s− 1. Equation (5) represents that an order has to adopt one
splitting way in every stage. Equation (6) ensures an order has a unique order splitting way in
one stage. Equation (7) shows the relationship between the order production rate and machine
quantities the order used. Equation (8) states that each order has to be processed completely in
each stage. Equation (9) and Equation (10) are sequencing constraints andmust be imposed on
a pair of work orders n0 and n only if they are allocated to the same machine ðs; k;mÞ.

4.3.2 PSO-based algorithm inmachine configuration.When using PSO-based algorithm to
deal with scheduling problems, it is critical to design an encoding and decoding schema to
construct particles for the specific problem. In this paper, we develop a new matrix coding
method to generate feasible particles. In particular, the specific coding schema can be seen as
following:

A ¼

2
664
a11 a12 � � � a1m
a21 a22 � � � a2m
� � � � � � � � � � � �
an1 an2 � � � anm

3
775; (11)

where aij is uniformly distributed in
�
a; aþ 2

Rðs;aÞ−1þ2
Rðs;aÞ−2þ...þ20

10θ

	
. a denotes the MG and Rðs;aÞ

denotes the total number of machines in the MG and θ ¼ 2Rðs;aÞ−1 þ 2Rðs;aÞ−2 þ . . .þ 20. C&C
planning results have obtained in section 4.2 and machine quantities of each MG is fixed;
hence, the distribution of aij is determined. In our encoding method, the integral part of aij
stands for the selected machine group of order i in stage j, and the fractional part of aij
represents the machine configuration (order splitting way) of order i in stage j on MG a. For
example, if an order is encoded as 2.7 in WB stage, the order will be processed on the MG 2;
besides, 7 equals 111 in binary, indicating that the order is decomposed into three jobs and
processed on three parallel machines of machine group 2.

The steps of the PSO algorithm are shown as follows. Information of each particle can be
represented by d dimension vector, in which position can be represented as
Xi ¼ ðxi1; xi2; . . . ; xidÞ and velocity can be shown as Vi ¼ ðvi1; vi2; . . . ; vidÞ.
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Step 1: Initialization. According to the C&C planning results and machine details,
generating the initial particles randomly.

Step 2: Fitness. Evaluating the fitness of each particle in the swarm using the fitness
function as shown in equation (3) and find each particle’s best value pbest and swarm’s
best value gbest.

Step 3: Update. Calculating the velocity and current position of each particle using the
following equations:

vidðt þ 1Þ ¼ w∙vidðtÞ þ c1∙rand1ð Þ∙½pbestidðtÞ � xidðtÞ� þ c2∙rand2ð Þ∙½gbestidðtÞ � xidðtÞ�;
(12)

xidðt þ 1Þ ¼ xidðtÞ þ vidðt þ 1Þ: (13)

Step 4: Selection. If a particle’s current fitness is superior to optimal history fitness,
substituting it as the optimal fitness and recording the current position as the optimal
position. Finding the current optimal solution in each individual swarm and global
optimal solution, updating pbest and gbest.

Step 5: Termination. Stopping the algorithm until the stopping criteria is satisfied;
otherwise, returning to step 2.

5. Case study
In this section, we use a case study to demonstrate our multi-agent based scheduling
framework for semiconductor back-end manufacturing process. DB,WB andmolding stages
as bottlenecks of semiconductor back-end shopfloor are considered in this paper.

5.1 RFID-enabled intelligent manufacturing environment
Figure 4 shows the overall deployment of the intelligent manufacturing environment
considering DB, WB and molding stage.

(1) Each machine in the shopfloor is embedded with RFID readers. This reader is multi-
functional and is responsible for reading the tags attached on different passive
objects. Nomatter what materials, tools orWIPs are monitored, the RFID readers will
capture the data recorded in the RFID tags immediately.

(2) RFID readers are deployed in the material and tool warehouse, while RFID tags are
deployed on each identified material and tool. Thus, when materials or tools are
required by shopfloor managers through mobile devices, they will be transported to
the production line in time. In addition, the key information recorded in the RFID tags
will be captured by the RFID readers and the original data will be transmitted to
upper-level applications like MES for scheduling.

(3) In shopfloor production line, RFID readers are deployed optimally at some fixed place
so that the radiation range can cover the whole shopfloor. In our framework, RFID
readers are deployed in the entrance and exit of the job buffer in each stage. WIPs
arrives in the job buffer of each stage continuously, and the deployed RFID readers
will record all important information through the RFID tags on the WIPs. The C&C
planning results and machine configuration decisions will be displayed on the mobile
devices in the shopfloor manager’s office, by data analytic model embedded in the TS
agent.
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(4) Materials, tools and WIPs are transported by automatic material handling system
(AMHS) between each stage. AMHS consists of 3D warehouse, automatic gripping
robotic arms, intelligent robots and automatic guided vehicles. By the analytic of
multi-source real-time data, managers will give instructions to AMHS remotely
according to the real time scheduling results.

5.2 C&C planning and machine configuration results
We conduct a small-scale process simulation to validate our algorithms in C&C planning and
machine configuration. In reality, the semiconductor back-end manufacturing process is
much more complex due to the large quantities of machines and orders. We make the
following assumptions to justify our model.

Lot buffer

Stage 1

Lot buffer

Stage 3

Lot buffer

Raw material
warehouse

Stage 2

AMHS AMHS

AMHS

Tools warehouse
RFID reader

Shop floor manager office

RFID real time database

Multisource operation data

Registry(Master data, et al.)

Real time data processing
module (RTDP)

Data analytic module
(DAM)

WIP tracking
and quality
monitoring

Production
scheduling

result

Equipment
maintenance

task

Source(s): Figure by authors

Figure 4.
RFID-enabled

intelligent
manufacturing
environment
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(1) The order sizemeasured by number ofmagazines has a uniform distribution between
[10,000 and 300,000].

(2) Machine group is pre-determined, which can cover all the order capabilities’
requirements. Besides, machine capacity and unit processing time are both randomly
chosen according to machine groups’ characteristics.

(3) Machine numbers of each group are randomly determined by different uniform
distribution.

(4) Each order has only one type of products and all the orders in this simulation are
different from each other.

The designed problem has ten orders and each order must undergo three processing stages
(i.e. DB, WB and molding). The details of each order can be seen from Table 1. Note that we
have normalized the start time and due date of each order in Table 1. Table 2 shows detailed
information of machines in each stage, including MGs, machine numbers, machine
capabilities, unit processing time of each MG.

The procedure of real time scheduling in this case includes two main steps, they are
described as flows:

(1) At first, orders are assigned to different MGs according to the real status of different
machine groups. For each process, a potential machine groups set will be firstly
established according to the orders’ required capability. Then, utilization of each MG
in the potential set will be calculated and evaluated by the method in the TS agent.
Furthermore, the machine group with the maximum available capacity ratio in the
potential set will be selected. The C&C planning results are shown in Table 3. Based
on the results of Table 3, we make a comparison of loading rate of each MG between
the C&C planning method and stochastic dispatching method, as shown in Figure 5.

(2) After all the process of all the orders optimally assigned toMGs, TS agent is ready for
scheduling the tasks (i.e. machine configuration) using PSO based algorithm
designed in section 4.3.2. Table 4 shows the scheduling results of the data in Table 1.

In Table 4, the first row represents the processing stages machine configuration of
semiconductor back-end manufacturing and the first column represents the order numbers.
In columns 2∼4, the data (x, y, z) of the ‘j’ row and ‘i’ columnmeans the order i is manufactured
inMG x from time y to time z at manufacturing stage j. For example, (WB_T03, 2, 10) of row 3
and column 3 represents that order 2 is manufactured in MGWB_T03 from time eight to ten

Orders Earliest start time/day Due date/day Order size (mag.) Required capability in each stage

1 0 96 168420 C11;C24;C32

2 4 13 11403 C13;C21;C31

3 9 17 23910 C11;C23;C32

4 15 63 68970 C12;C25;C33

5 19 73 138960 C11;C26;C31

6 21 90 170351 C12;C22;C34

7 28 55 15503 C13;C26;C31

8 32 81 19921 C12;C25;C32

9 33 87 52160 C11;C24;C34

10 45 90 18630 C12;C24;C33

Source(s): Table by authors

Table 1.
Detailed information of
ten orders
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times at the WB stage. In the last column, the data (x, y, z) represents the machine
configuration results of order i. For example, (1, 23, 3) of row 4 and column 5 represents that
the order 3 uses 1 machine of group DB_T01, 23 machines of groupWB_T01 and 3machines
of group MD_T02.

6. Conclusions
6.1 Concluding remarks
Real-time scheduling becomes increasingly important for semiconductor back-end
manufacturing process in industry 4.0. Different from other manufacturing processes,
order splitting and merging are common in semiconductor back-end manufacturing
processes. Besides, in the shopfloor, there are multiple types of machines in each processing

Stages Machine group Numbers Capabilities Capacity/(mag.) Unit processing time (day/mag)

DB DB_T01 10 C11 40,000 2/(60*24)
DB_T02 18 C12 20,000 2/(60*24)
DB_T03 5 C13 20,000 3/(60*24)

WB WB_T01 51 C23;C25 10,000 3/(60*24)
WB_T02 45 C24 10,000 5/(60*24)
WB_T03 47 C21;C24 10,000 2/(60*24)
WB_T04 40 C22;C25;C26 10,000 2/(60*24)
WB_T05 50 C26 10,000 3/(60*24)

MD MD_T01 8 C32 50,000 5/(60*24)
MD_T02 5 C31;C32;C33 40,000 2/(60*24)
MD_T03 8 C31;C34 50,000 2/(60*24)

Source(s): Table by authors

1 2 3 4 5 6 7 8 9 10

DB T01 T03 T01 T02 T01 T02 T03 T02 T01 T02
WB T03 T03 T01 T01 T05 T04 T05 T01 T02 T02
MD T01 T03 T02 T02 T03 T03 T02 T01 T03 T03

Source(s): Table by authors

0
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0.4
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Source(s): Figure by authors
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stage. Hence, real-time scheduling for semiconductor back-end manufacturing process
requires efficient information exchange among physical resources (e.g. machines, tools and
materials) and digital resources (e.g. information systems and RFID devices).

This paper proposes a referenced multi-agent based real-time scheduling architecture for
semiconductor back-end manufacturing process, in which C&C planning and machine
configuration algorithms are developed, respectively. The contributions are summarized as
follows. First, an efficient information exchange mechanism is realized based on our multi-
agent system architecture. For example, the auto-ID devices deployed at machine side can
capture the real-time data of machines, materials, WIPs and tools, which is transmitted to the
IMC for further analysis. Second, a TS agent is established for C&C evaluation and machine
configuration with the real-time data in the shopfloor. In particular, a C&C planning method
based on the real-time utilization of each MG is studied to optimally assign the orders to
machine groups in the TS agent. Furthermore, a machine configuration algorithm based on
PSO is developed to schedule the tasks with order splitting and merging in the TS agent.
Third, a production agent is designed for monitoring and tracking the manufacturing
disturbances during the production process. Finally, we conducted a case study to validate
the proposed multi-agent architecture and the scheduling algorithms.

6.2 Managerial implications
The theoretical implications of this paper are as follows. First, we proposed a multi-agent
based scheduling framework for the semiconductor back-end manufacturing process, which
integrates the C&C planning of machine groups and human control that were seldom
considered by previous studies. Second, we developed a C&C planning algorithm based on
the greedy policy to sub-optimally assign each order to themost appropriateMG. Themethod
balances the workload for each machine group in each stage. Third, to schedule each order
and its splitting jobs to the identified machine in each manufacturing stage (i.e. machine
configuration decision), we propose a PSO-based algorithm with a new coding mechanism,
which determines both order assignment and order splitting and merging ways.

Our study also provides practical implications for the scheduling problems of the
semiconductor back-end manufacturing process. On the one hand, the proposed multi-agent
based scheduling architecture enables a seamless information flow among different
manufacturing stages and information systems, which realizes the real time scheduling
and monitoring of all the orders. On the other hand, our proposed algorithms for C&C
planning (based on greedy policy) and machine configuration (based on PSO) enable the
semiconductor back-end shop floor to balance the workload of each MG and realize the order
splitting and merging conveniently.

Orders DB stage WB stage MD stage Machine configuration

1 (DB_T01, 0, 55) (WB_T03, 55, 68) (MD_T01, 70, 96) (5, 17, 6)
2 (DB_T03, 4, 8) (WB_T03, 8, 10) (MD_T03, 10, 11) (2, 20, 1)
3 (DB_T01, 9, 13) (WB_T01, 13, 15) (MD_T02, 15, 18) (1, 23, 3)
4 (DB_T02, 15, 25) (WB_T01, 30, 50) (MD_T02, 50, 65) (4, 6, 2)
5 (DB_T01, 19, 43) (WB_T05, 43, 50) (MD_T03, 55, 73) (4, 26, 4)
6 (DB_T02, 21, 40) (WB_T04, 40, 53) (MD_T03, 54, 98) (9, 30, 4)
7 (DB_T03, 28, 33) (WB_T05, 33, 40) (MD_T02, 40, 58) (5, 24, 3)
8 (DB_T02, 32, 41) (WB_T01, 41, 62) (MD_T01, 62, 88) (9, 10, 2)
9 (DB_T01, 33, 60) (WB_T02, 60, 70) (MD_T03, 70, 84) (2, 10, 2)
10 (DB_T02, 49, 63) (WB_T02, 63, 72) (MD_T03, 72, 90) (13, 15, 3)

Source(s): Table by authors

Table 4.
Machine configuration
results
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6.3 Future research directions
The current work can be extended from the following aspects in the future. First, the multi-
agent architecture in this paper focuses on the real-time scheduling of orders and machines.
Future research should involve real time internal logistics planning and scheduling in the
semiconductor back-end shopfloor, especially when AGVs are widely used. Second, the
proposed multi-agent architecture and algorithms is specifically developed for
semiconductor back-end manufacturing process. Future works should extend the
framework in other manufacturing systems that have different process features,
e.g. flexible manufacturing systems or lean production systems.
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