Search results

1 – 10 of 217
Article
Publication date: 14 September 2023

Cheng Liu, Yi Shi, Wenjing Xie and Xinzhong Bao

This paper aims to provide a complete analysis framework and prediction method for the construction of the patent securitization (PS) basic asset pool.

Abstract

Purpose

This paper aims to provide a complete analysis framework and prediction method for the construction of the patent securitization (PS) basic asset pool.

Design/methodology/approach

This paper proposes an integrated classification method based on genetic algorithm and random forest algorithm. First, comprehensively consider the patent value evaluation model and SME credit evaluation model, determine 17 indicators to measure the patent value and SME credit; Secondly, establish the classification label of high-quality basic assets; Then, genetic algorithm and random forest model are used to predict and screen high-quality basic assets; Finally, the performance of the model is evaluated.

Findings

The machine learning model proposed in this study is mainly used to solve the screening problem of high-quality patents that constitute the underlying asset pool of PS. The empirical research shows that the integrated classification method based on genetic algorithm and random forest has good performance and prediction accuracy, and is superior to the single method that constitutes it.

Originality/value

The main contributions of the article are twofold: firstly, the machine learning model proposed in this article determines the standards for high-quality basic assets; Secondly, this article addresses the screening issue of basic assets in PS.

Details

Kybernetes, vol. 53 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 3 April 2024

Samar Shilbayeh and Rihab Grassa

Bank creditworthiness refers to the evaluation of a bank’s ability to meet its financial obligations. It is an assessment of the bank’s financial health, stability and capacity to…

Abstract

Purpose

Bank creditworthiness refers to the evaluation of a bank’s ability to meet its financial obligations. It is an assessment of the bank’s financial health, stability and capacity to manage risks. This paper aims to investigate the credit rating patterns that are crucial for assessing creditworthiness of the Islamic banks, thereby evaluating the stability of their industry.

Design/methodology/approach

Three distinct machine learning algorithms are exploited and evaluated for the desired objective. This research initially uses the decision tree machine learning algorithm as a base learner conducting an in-depth comparison with the ensemble decision tree and Random Forest. Subsequently, the Apriori algorithm is deployed to uncover the most significant attributes impacting a bank’s credit rating. To appraise the previously elucidated models, a ten-fold cross-validation method is applied. This method involves segmenting the data sets into ten folds, with nine used for training and one for testing alternatively ten times changeable. This approach aims to mitigate any potential biases that could arise during the learning and training phases. Following this process, the accuracy is assessed and depicted in a confusion matrix as outlined in the methodology section.

Findings

The findings of this investigation reveal that the Random Forest machine learning algorithm superperforms others, achieving an impressive 90.5% accuracy in predicting credit ratings. Notably, our research sheds light on the significance of the loan-to-deposit ratio as a primary attribute affecting credit rating predictions. Moreover, this study uncovers additional pivotal banking features that intensely impact the measurements under study. This paper’s findings provide evidence that the loan-to-deposit ratio looks to be the purest bank attribute that affects credit rating prediction. In addition, deposit-to-assets ratio and profit sharing investment account ratio criteria are found to be effective in credit rating prediction and the ownership structure criterion came to be viewed as one of the essential bank attributes in credit rating prediction.

Originality/value

These findings contribute significant evidence to the understanding of attributes that strongly influence credit rating predictions within the banking sector. This study uniquely contributes by uncovering patterns that have not been previously documented in the literature, broadening our understanding in this field.

Details

International Journal of Islamic and Middle Eastern Finance and Management, vol. 17 no. 2
Type: Research Article
ISSN: 1753-8394

Keywords

Article
Publication date: 13 February 2024

Marcelo Cajias and Anna Freudenreich

This is the first article to apply a machine learning approach to the analysis of time on market on real estate markets.

Abstract

Purpose

This is the first article to apply a machine learning approach to the analysis of time on market on real estate markets.

Design/methodology/approach

The random survival forest approach is introduced to the real estate market. The most important predictors of time on market are revealed and it is analyzed how the survival probability of residential rental apartments responds to these major characteristics.

Findings

Results show that price, living area, construction year, year of listing and the distances to the next hairdresser, bakery and city center have the greatest impact on the marketing time of residential apartments. The time on market for an apartment in Munich is lowest at a price of 750 € per month, an area of 60 m2, built in 1985 and is in a range of 200–400 meters from the important amenities.

Practical implications

The findings might be interesting for private and institutional investors to derive real estate investment decisions and implications for portfolio management strategies and ultimately to minimize cash-flow failure.

Originality/value

Although machine learning algorithms have been applied frequently on the real estate market for the analysis of prices, its application for examining time on market is completely novel. This is the first paper to apply a machine learning approach to survival analysis on the real estate market.

Details

Journal of Property Investment & Finance, vol. 42 no. 2
Type: Research Article
ISSN: 1463-578X

Keywords

Article
Publication date: 14 October 2022

Minghuan Shou, Xueqi Bao and Jie Yu

Online reviews are regarded as a source of information for decision-making because of the abundance and ready availability of information. Whereas, the sheer volume of online…

508

Abstract

Purpose

Online reviews are regarded as a source of information for decision-making because of the abundance and ready availability of information. Whereas, the sheer volume of online reviews makes it hard for consumers, especially the older adults who perceive more difficulties in reading reviews and obtaining information compared to younger adults, to locate the useful ones. The main objective of this study is to propose an effective method to locate valuable reviews of mobile phones for older adults. Besides, the authors also want to explore what characteristics of the technology older adults prefer. This will benefit both e-retailers and e-commerce platforms.

Design/methodology/approach

After collecting online reviews related to mobile phones designed for older adults from a popular Chinese e-commerce platform (JD Mall), topic modeling, term frequency-inverse document frequency (TF-IDF), and linguistic inquiry and word count (LIWC) methods were applied to extract latent topics and uncover potential dimensions that consumers frequently referred to in their reviews. According to consumers' attitudes towards different popular topics, seven machine learning models were employed to predict the usefulness and popularity of online reviews due to their excellent performance in prediction. To improve the performance, a weighted model based on the two best-performing models was built and evaluated.

Findings

Based on the TF-IDF, topic modeling, and LIWC methods, the authors find that older adults are more interested in the exterior, sound, and communication functions of mobile phones. Besides, the weighted model (Random Forest: Decision Tree = 2:1) is the best model for predicting the online review popularity, while random forest performs best in predicting the perceived usefulness of online reviews.

Practical implications

This study’s findings can help e-commerce platforms and merchants identify the needs of the targeted consumers, predict reviews that will get more attention, and provide some early responses to some questions.

Originality/value

The results propose that older adults pay more attention to the mobile phones' exterior, sound, and communication function, guiding future research. Besides, this paper also enriches the current studies related to making predictions based on the information contained in the online reviews.

Details

Information Technology & People, vol. 36 no. 7
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 28 February 2024

Yoonjae Hwang, Sungwon Jung and Eun Joo Park

Initiator crimes, also known as near-repeat crimes, occur in places with known risk factors and vulnerabilities based on prior crime-related experiences or information…

117

Abstract

Purpose

Initiator crimes, also known as near-repeat crimes, occur in places with known risk factors and vulnerabilities based on prior crime-related experiences or information. Consequently, the environment in which initiator crimes occur might be different from more general crime environments. This study aimed to analyse the differences between the environments of initiator crimes and general crimes, confirming the need for predicting initiator crimes.

Design/methodology/approach

We compared predictive models using data corresponding to initiator crimes and all residential burglaries without considering repetitive crime patterns as dependent variables. Using random forest and gradient boosting, representative ensemble models and predictive models were compared utilising various environmental factor data. Subsequently, we evaluated the performance of each predictive model to derive feature importance and partial dependence based on a highly predictive model.

Findings

By analysing environmental factors affecting overall residential burglary and initiator crimes, we observed notable differences in high-importance variables. Further analysis of the partial dependence of total residential burglary and initiator crimes based on these variables revealed distinct impacts on each crime. Moreover, initiator crimes took place in environments consistent with well-known theories in the field of environmental criminology.

Originality/value

Our findings indicate the possibility that results that do not appear through the existing theft crime prediction method will be identified in the initiator crime prediction model. Emphasising the importance of investigating the environments in which initiator crimes occur, this study underscores the potential of artificial intelligence (AI)-based approaches in creating a safe urban environment. By effectively preventing potential crimes, AI-driven prediction of initiator crimes can significantly contribute to enhancing urban safety.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 1 January 2024

Shrutika Sharma, Vishal Gupta, Deepa Mudgal and Vishal Srivastava

Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to…

Abstract

Purpose

Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to experiment with different printing settings. The current study aims to propose a regression-based machine learning model to predict the mechanical behavior of ulna bone plates.

Design/methodology/approach

The bone plates were formed using fused deposition modeling (FDM) technique, with printing attributes being varied. The machine learning models such as linear regression, AdaBoost regression, gradient boosting regression (GBR), random forest, decision trees and k-nearest neighbors were trained for predicting tensile strength and flexural strength. Model performance was assessed using root mean square error (RMSE), coefficient of determination (R2) and mean absolute error (MAE).

Findings

Traditional experimentation with various settings is both time-consuming and expensive, emphasizing the need for alternative approaches. Among the models tested, GBR model demonstrated the best performance in predicting both tensile and flexural strength and achieved the lowest RMSE, highest R2 and lowest MAE, which are 1.4778 ± 0.4336 MPa, 0.9213 ± 0.0589 and 1.2555 ± 0.3799 MPa, respectively, and 3.0337 ± 0.3725 MPa, 0.9269 ± 0.0293 and 2.3815 ± 0.2915 MPa, respectively. The findings open up opportunities for doctors and surgeons to use GBR as a reliable tool for fabricating patient-specific bone plates, without the need for extensive trial experiments.

Research limitations/implications

The current study is limited to the usage of a few models. Other machine learning-based models can be used for prediction-based study.

Originality/value

This study uses machine learning to predict the mechanical properties of FDM-based distal ulna bone plate, replacing traditional design of experiments methods with machine learning to streamline the production of orthopedic implants. It helps medical professionals, such as physicians and surgeons, make informed decisions when fabricating customized bone plates for their patients while reducing the need for time-consuming experimentation, thereby addressing a common limitation of 3D printing medical implants.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 26 April 2024

Luís Jacques de Sousa, João Poças Martins and Luís Sanhudo

Factors like bid price, submission time, and number of bidders influence the procurement process in public projects. These factors and the award criteria may impact the project’s…

Abstract

Purpose

Factors like bid price, submission time, and number of bidders influence the procurement process in public projects. These factors and the award criteria may impact the project’s financial compliance. Predicting budget compliance in construction projects has been traditionally challenging, but Machine Learning (ML) techniques have revolutionised estimations.

Design/methodology/approach

In this study, Portuguese Public Procurement Data (PPPData) was utilised as the model’s input. Notably, this dataset exhibited a substantial imbalance in the target feature. To address this issue, the study evaluated three distinct data balancing techniques: oversampling, undersampling, and the SMOTE method. Next, a comprehensive feature selection process was conducted, leading to the testing of five different algorithms for forecasting budget compliance. Finally, a secondary test was conducted, refining the features to include only those elements that procurement technicians can modify while also considering the two most accurate predictors identified in the previous test.

Findings

The findings indicate that employing the SMOTE method on the scraped data can achieve a balanced dataset. Furthermore, the results demonstrate that the Adam ANN algorithm outperformed others, boasting a precision rate of 68.1%.

Practical implications

The model can aid procurement technicians during the tendering phase by using historical data and analogous projects to predict performance.

Social implications

Although the study reveals that ML algorithms cannot accurately predict budget compliance using procurement data, they can still provide project owners with insights into the most suitable criteria, aiding decision-making. Further research should assess the model’s impact and capacity within the procurement workflow.

Originality/value

Previous research predominantly focused on forecasting budgets by leveraging data from the private construction execution phase. While some investigations incorporated procurement data, this study distinguishes itself by using an imbalanced dataset and anticipating compliance rather than predicting budgetary figures. The model predicts budget compliance by analysing qualitative and quantitative characteristics of public project contracts. The research paper explores various model architectures and data treatment techniques to develop a model to assist the Client in tender definition.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 December 2023

Majid Rahi, Ali Ebrahimnejad and Homayun Motameni

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is…

Abstract

Purpose

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is important. Unfortunately, the traditional use of water by humans for agricultural purposes contradicts the concept of optimal consumption. Therefore, designing and implementing a mechanized irrigation system is of the highest importance. This system includes hardware equipment such as liquid altimeter sensors, valves and pumps which have a failure phenomenon as an integral part, causing faults in the system. Naturally, these faults occur at probable time intervals, and the probability function with exponential distribution is used to simulate this interval. Thus, before the implementation of such high-cost systems, its evaluation is essential during the design phase.

Design/methodology/approach

The proposed approach included two main steps: offline and online. The offline phase included the simulation of the studied system (i.e. the irrigation system of paddy fields) and the acquisition of a data set for training machine learning algorithms such as decision trees to detect, locate (classification) and evaluate faults. In the online phase, C5.0 decision trees trained in the offline phase were used on a stream of data generated by the system.

Findings

The proposed approach is a comprehensive online component-oriented method, which is a combination of supervised machine learning methods to investigate system faults. Each of these methods is considered a component determined by the dimensions and complexity of the case study (to discover, classify and evaluate fault tolerance). These components are placed together in the form of a process framework so that the appropriate method for each component is obtained based on comparison with other machine learning methods. As a result, depending on the conditions under study, the most efficient method is selected in the components. Before the system implementation phase, its reliability is checked by evaluating the predicted faults (in the system design phase). Therefore, this approach avoids the construction of a high-risk system. Compared to existing methods, the proposed approach is more comprehensive and has greater flexibility.

Research limitations/implications

By expanding the dimensions of the problem, the model verification space grows exponentially using automata.

Originality/value

Unlike the existing methods that only examine one or two aspects of fault analysis such as fault detection, classification and fault-tolerance evaluation, this paper proposes a comprehensive process-oriented approach that investigates all three aspects of fault analysis concurrently.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 7 July 2023

Xiaojie Xu and Yun Zhang

The Chinese housing market has witnessed rapid growth during the past decade and the significance of housing price forecasting has undoubtedly elevated, becoming an important…

Abstract

Purpose

The Chinese housing market has witnessed rapid growth during the past decade and the significance of housing price forecasting has undoubtedly elevated, becoming an important issue to investors and policymakers. This study aims to examine neural networks (NNs) for office property price index forecasting from 10 major Chinese cities for July 2005–April 2021.

Design/methodology/approach

The authors aim at building simple and accurate NNs to contribute to pure technical forecasts of the Chinese office property market. To facilitate the analysis, the authors explore different model settings over algorithms, delays, hidden neurons and data-spitting ratios.

Findings

The authors reach a simple NN with three delays and three hidden neurons, which leads to stable performance of about 1.45% average relative root mean square error across the 10 cities for the training, validation and testing phases.

Originality/value

The results could be used on a standalone basis or combined with fundamental forecasts to form perspectives of office property price trends and conduct policy analysis.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 24 April 2024

S. Thavasi and T. Revathi

With so many placement opportunities around the students in their final or prefinal year, they start to feel the strain of the season. The students feel the need to be aware of…

Abstract

Purpose

With so many placement opportunities around the students in their final or prefinal year, they start to feel the strain of the season. The students feel the need to be aware of their position and how to increase their chances of being hired. Hence, a system to guide their career is one of the needs of the day.

Design/methodology/approach

The job role prediction system utilizes machine learning techniques such as Naïve Bayes, K-Nearest Neighbor, Support Vector machines (SVM) and Artificial Neural Networks (ANN) to suggest a student’s job role based on their academic performance and course outcomes (CO), out of which ANN performs better. The system uses the Mepco Schlenk Engineering College curriculum, placement and students’ Assessment data sets, in which the CO and syllabus are used to determine the skills that the student has gained from their courses. The necessary skills for a job position are then extracted from the job advertisements. The system compares the student’s skills with the required skills for the job role based on the placement prediction result.

Findings

The system predicts placement possibilities with an accuracy of 93.33 and 98% precision. Also, the skill analysis for students gives the students information about their skill-set strengths and weaknesses.

Research limitations/implications

For skill-set analysis, only the direct assessment of the students is considered. Indirect assessment shall also be considered for future scope.

Practical implications

The model is adaptable and flexible (customizable) to any type of academic institute or universities.

Social implications

The research will be very much useful for the students community to bridge the gap between the academic and industrial needs.

Originality/value

Several works are done for career guidance for the students. However, these career guidance methodologies are designed only using the curriculum and students’ basic personal information. The proposed system will consider the students’ academic performance through direct assessment, along with their curriculum and basic personal information.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 217