Search results

1 – 10 of over 12000
Article
Publication date: 20 June 2023

Kei Kimura, Takeshi Onogi and Fuminobu Ozaki

This work examines the effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures, through tensile coupon tests at various strain…

Abstract

Purpose

This work examines the effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures, through tensile coupon tests at various strain rates, to propose appropriate reduction factors considering the strain rate effect.

Design/methodology/approach

The stress–strain relationships of 385 N/mm2, 440 N/mm2 and 630 N/mm2-class steel plates at elevated temperatures are examined at three strain rate values (0.3%/min, 3.0%/min and 7.5%/min), and the reduction factors for the effective yield strength at elevated temperatures are evaluated from the results. A differential evolution-based optimization is used to produce the reduction-factor curves.

Findings

The strain rate effect enhances with an increase in the standard design value of the yield point. The effective yield strength and standard design value of the yield point exhibit high linearity between 600 and 700 °C. In addition to effectively evaluating the test results, the proposed reduction-factor curves can also help determine the ultimate strength of a steel member at collapse.

Originality/value

The novelty of this study is the quantitative evaluation of the relationship between the standard design value of yield point at ambient temperature and the strain-rate effect at elevated temperatures. It has been observed that the effect of the strain rate at elevated temperatures increases with the increase in the standard design value of the yield point for various steel strength grades.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 June 2023

Takumi Yamaguchi and Fuminobu Ozaki

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope…

45

Abstract

Purpose

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections at fire and post fire.

Design/methodology/approach

Steady-state tests from ambient temperature (20 °C) to 800 °C, transient-state tests under the allowable design tensile force and tensile tests in an ambient temperature environment after heating (heating temperatures of 200–800 °C) were conducted.

Findings

The tensile strengths of the wire rope and end-connection specimens at both fire and post fire were obtained. The steel wire rope specimens possessed larger reduction factors than general hot-rolled mild steels (JIS SS400) and high-strength steel bolts (JIS F10T). The end-connection specimens with sufficient socket lengths exhibited ductile fracture of the wire rope part at both fire and post fire; however, those with short socket lengths experienced a pull-out fracture at the socket.

Originality/value

The fundamental and important tensile test results of the super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections were accumulated at fire and post fire, and the fracture modes were clarified. The obtained test results contribute to fire resistance performance-based design of cable steel structures at fire and fire-damage investigations to consider their reusability post fire.

Article
Publication date: 10 May 2022

Fatimah De'nan, Megat Azmi Megat Johari, Shaneez Christie Anak Nyandau and Nor Salwani Hashim

The purpose of this study is to know the influence of palm oil fuel ash and metakaolin on the strength of concrete and crack resistance of reinforced concrete beam. An ordinary…

Abstract

Purpose

The purpose of this study is to know the influence of palm oil fuel ash and metakaolin on the strength of concrete and crack resistance of reinforced concrete beam. An ordinary portland cement has been used in the concretes production where it is an important material to be considered due to its nature that reacts with every substance present. During the cement production, a significant amount of carbon dioxide is emitted from the clinker in rotary kiln and lot of energy is required in the production processes. Such an event can be prevented by replacing the part of cement with metakaolin (MK) and palm oil fuel ash (POFA). Aside from being a cementitious alternative, the materials can also contribute to a greener environment and more sustainable building, as POFA is available in Malaysia and may be used to substitute cement and minimize pollution.

Design/methodology/approach

This study assesses the effect of MK and POFA on the concrete in terms of compressive strength and cracks pattern of the reinforced concrete beam based on the relevant previous studies.

Findings

From this study, the compressive strength of concrete containing MK and POFA was higher than the control mix with the percentage of improvement in the range of 0.8%–78.2% for MK and 0.5%–14%, respectively. The optimum content of MK and POFA is between the range of 10% and 15% and 10% and 20%, respectively, to achieve high strength of concrete. Other than that, the inclusion of MK to the concrete mix improves the strength of reinforced concrete beams and reduces cracks on the surface of reinforced concrete beams, whereas the inclusion of POFA to the concrete mix increases the cracks on reinforced concrete beams. The cracks appeared within the flexure zone of every beam containing the MK and POFA.

Originality/value

It was found that the fineness of MK and POFA has a significant influence on the mechanical properties of concrete.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 May 2023

Vijaya Prasad Burle, Tattukolla Kiran, N. Anand, Diana Andrushia and Khalifa Al-Jabri

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete…

Abstract

Purpose

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.

Design/methodology/approach

In this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.

Findings

The test results concluded that concrete with BF showed a lower loss in CS after 925 °C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 °C and 1029 °C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.

Originality/value

Performance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 October 2023

Cleiton Lazaro Fazolo De Assis and Cleber Augusto Rampazo

This paper aims to evaluate the mechanical behaviour of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) filaments for fusion filament fabrication (FFF). PC/ABS have emerged…

Abstract

Purpose

This paper aims to evaluate the mechanical behaviour of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) filaments for fusion filament fabrication (FFF). PC/ABS have emerged as a promising material for FFF due to their excellent mechanical properties. However, the optimal processing conditions and the effect of the blending ratio on the mechanical properties of the resulting workpieces are still unclear.

Design/methodology/approach

A statistical factorial matrix was designed, including infill pattern, printing speed, nozzle size, layer height and printing temperature as factors (with three levels). A total of 810 workpieces were printed using PC/ABS blends filament with the FFF. The workpieces’ finishing and mass were evaluated. Tensile tests were performed. Analysis of variance was performed to determine the main effects of the processing conditions on the mechanical properties.

Findings

The results showed that the PC/ABS (70/30) exhibited higher tensile. Tensile rupture corresponded to 30% of the tensile strength. The infill pattern showed the highest contribution to the responses. The concentric pattern showed higher tensile strength. Tensile strength and mass ratio demonstrated the influence of mass on tensile strength. The influence of printing parameters on deformation depended on the blend proportions. Higher printing speed and lower layer height provided better quality workpieces.

Originality/value

This study has implications for the design and manufacturing of three-dimensional printed parts using PC/ABS filaments. An extensive experimental matrix was applied, aiming at a complete understanding of mechanical behavior, considering the main printing parameters and combinations not explored by literature.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 January 2023

Shrutika Sharma, Vishal Gupta and Deepa Mudgal

The implications of metallic biomaterials involve stress shielding, bone osteoporosis, release of toxic ions, poor wear and corrosion resistance and patient discomfort due to the…

Abstract

Purpose

The implications of metallic biomaterials involve stress shielding, bone osteoporosis, release of toxic ions, poor wear and corrosion resistance and patient discomfort due to the need of second operation. This study aims to use additive manufacturing (AM) process for fabrication of biodegradable orthopedic small locking bone plates to overcome complications related to metallic biomaterials.

Design/methodology/approach

Fused deposition modeling technique has been used for fabrication of bone plates. The effect of varying printing parameters such as infill density, layer height, wall thickness and print speed has been studied on tensile and flexural properties of bone plates using response surface methodology-based design of experiments.

Findings

The maximum tensile and flexural strengths are mainly dependent on printing parameters used during the fabrication of bone plates. Tensile and flexural strengths increase with increase in infill density and wall thickness and decrease with increase in layer height and wall thickness.

Research limitations/implications

The present work is focused on bone plates. In addition, different AM techniques can be used for fabrication of other biomedical implants.

Originality/value

Studies on application of AM techniques on distal ulna small locking bone plates have been hardly reported. This work involves optimization of printing parameters for development of distal ulna-based bone plate with high mechanical strength. Characterization of microscopic fractures has also been performed for understanding the fracture behavior of bone plates.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 April 2024

Shivendra Singh Rathore and Chakradhara Rao Meesala

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.

Design/methodology/approach

M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.

Findings

The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.

Research limitations/implications

The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.

Originality/value

The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 May 2023

Kritika Khanna, Jagwinder Singh Pandher and Sarbjit Singh Bedi

The present study has been carried out to study whether and how different aspects of brand management (brand identity, brand image and brand meaning) are instrumental in…

Abstract

Purpose

The present study has been carried out to study whether and how different aspects of brand management (brand identity, brand image and brand meaning) are instrumental in maintaining and enhancing attachment strength of students with higher education institutes (HEIs). Further, to understand what brand management aspect channels the impact of what branding driver on attachment strength in most effective manner.

Design/methodology/approach

The study analysed combined mediating effects as well as specific mediating effects to test the mediating role of brand management aspects.

Findings

The study reveals that brand image plays highest mediating role among all aspects of brand management. HEIs need to enhance service quality because brand image carries the highest influence of service quality on attachment strength. Similarly, brand identity carries the highest influence of heritage on attachment strength. Brand meaning carries the highest influence of competence and reputation on attachment strength.

Research limitations/implications

The present study, based on empirical research, has built the framework and mechanism for creating attachment strength utilising the intangible resources of HEIs through brand management. The present study examines how specific intangible resources exhibit varying influences on attachment strength via distinct brand management mediation effects.

Practical implications

The present study provides framework for designing branding strategies to build and channelise necessary intangible resources of branding for nourishing and nurturing attachment strength.

Originality/value

The present study contributes to scarce branding literature in context of HEIs. The study proposes role of HEI branding in developing students' attachment strength with their HEIs.

Details

Higher Education, Skills and Work-Based Learning, vol. 13 no. 3
Type: Research Article
ISSN: 2042-3896

Keywords

Article
Publication date: 9 December 2022

Michael Rosenthal, Markus Rüggeberg, Christian Gerber, Lukas Beyrich and Jeremy Faludi

The purpose of this study is to quantify the vertical shrinkage rates and the mechanical strength of three-dimensional (3D) printed parts for a variety of wood-based materials for…

Abstract

Purpose

The purpose of this study is to quantify the vertical shrinkage rates and the mechanical strength of three-dimensional (3D) printed parts for a variety of wood-based materials for liquid deposition modeling.

Design/methodology/approach

The overall hypothesis was that a well-chosen combination of binders, fibers and fillers could reduce shrinkage in the Z dimension and increase compressive and flexural strength (DIN 52185, 52186). To test this assumption, eight sub-hypotheses were formulated. Mixtures of the ingredients were chosen in different ratios to measure the performance of prints. For time efficiency, an iterative heuristic approach was used – not testing all variations of all variables in even increments, but cutting off lines of testing when mixtures were clearly performing poorly.

Findings

The results showed that some mixtures had high dimensional accuracy and strength, while others had neither, and others had one but not the other. Shrinkage of 3D printed objects was mainly caused by water release during drying. An increase of the wood as well as the cement, sand, salt and gypsum content led to reduced vertical shrinkage, which varied between 0 and 23%. Compressive and flexural strength showed mixed trends. An increase in wood and salt content worsened both strength properties. The addition of fibers improved flexural, and the addition of cement improved compression strength. The highest strength values of 14 MPa for compressive and 8 MPa for flexural strength were obtained in the test series with gypsum.

Originality/value

This paper is an important milestone in the development of environmentally friendly materials for additive manufacturing. The potential of many ingredients to improve physical properties could be demonstrated.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 February 2022

Muhammad Dimyati, Prakoso Bhairawa Putera, Chichi Shintia Laksani, Muhammad Zulhamdani, Setiowiji Handoyo, Yan Rianto and Laksana Tri Handoko

This paper aims to identify the strengths of the universities based on the research area which are prioritized by the Government of Indonesia in the National Medium Term…

Abstract

Purpose

This paper aims to identify the strengths of the universities based on the research area which are prioritized by the Government of Indonesia in the National Medium Term Development Plan 2015–2019, in the research areas of food and agriculture; energy, new and renewable energy; health and medicine; transportation; telecommunication, information and communication; defense and security technologies and advanced materials.

Design/methodology/approach

The mapping of the research strength in Indonesian universities is performed by using data of the university research output in the Information System for Research and Community Service, Ministry of Research, Technology and Higher Education and categorized into seven categories, i.e. accredited national journals, international journals indexed by Scopus or others, Intellectual Property ownership, textbooks, prototypes and an appropriate technology. Based on the data obtained from Information System for Research and Community Service, there are 904 universities in Indonesia conducting research activities and generating 14,188 research outputs.

Findings

This paper analyzes 3 of the 9 National Research Priorities, namely, food, energy and health and medicine. The data show that there are 904 universities in Indonesia conducting research activities and producing 14,188 research results. The research strength index based on National Research Priorities shows that three universities have the highest cluster strength index. Gadjah Mada with an index value of 4.95 is the highest index in the food cluster. In the energy cluster of the Institut Teknologi Bandung with the highest index value of 0.63. Meanwhile, the Universitas Indonesia reached 2.06 as the highest index value in the health and medicine cluster.

Originality/value

Measurement of the strength of the study was conducted using data from research results from universities in 2016 which were recorded in the Information System for Research and Community Service. The University’s R&D strength is calculated from seven categories of research results: accredited national journals, international journals indexed by Scopus or others, intellectual property rights, textbooks, prototypes and appropriate technology products.

Details

Journal of Science and Technology Policy Management, vol. 14 no. 3
Type: Research Article
ISSN: 2053-4620

Keywords

1 – 10 of over 12000