Search results

21 – 30 of over 53000
Article
Publication date: 13 April 2021

Shuliang Li, Ke Gong, Bo Zeng, Wenhao Zhou, Zhouyi Zhang, Aixing Li and Li Zhang

The purpose of this paper is to overcome the weakness of the traditional model, in which the grey action quantity is a real number and thus leads to a “unique solution” and to…

Abstract

Purpose

The purpose of this paper is to overcome the weakness of the traditional model, in which the grey action quantity is a real number and thus leads to a “unique solution” and to build the model with a trapezoidal possibility degree function.

Design/methodology/approach

Using the system input and output block diagram of the model, the interval grey action quantity is restored under the condition of insufficient system influencing factors, and the trapezoidal possibility degree function is formed. Based on that, a new model able to output non-unique solutions is constructed.

Findings

The model satisfies the non-unique solution principle of the grey theory under the condition of insufficient information. The model is compatible with the traditional model in structure and modelling results. The validity and practicability of the new model are verified by applying it in simulating the ecological environment water consumption in the Yangtze River basin.

Practical implications

In this study, the interval grey number form of grey action quantity is restored under the condition of insufficient system influencing factors, and the unique solution to the problem of the traditional model is solved. It is of great value in enriching the theoretical system of grey prediction models.

Social implications

Taking power consumption as an example, the accurate prediction of the future power consumption level is related to the utilization efficiency of the power infrastructure investment. If the prediction of the power consumption level is too low, it will lead to the insufficient construction of the power infrastructure and the frequent occurrence of “power shortage” in the power industry. If the prediction is too high, it will lead to excessive investment in the power infrastructure. As a result, the overall surplus of power supply will lead to relatively low operation efficiency. Therefore, building an appropriate model for the correct interval prediction is a better way to solve such problems. The model proposed in this study is an effective one to solve such problems.

Originality/value

A new grey prediction model with its interval grey action quantity based on the trapezoidal possibility degree function is proposed for the first time.

Details

Grey Systems: Theory and Application, vol. 12 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 22 September 2023

Mehrzad Saeedikiya, Aidin Salamzadeh, Yashar Salamzadeh and Zeynab Aeeni

The current research aimed to investigate the external enablement role of Digital Infrastructures (DI) in the interplay of entrepreneurial cognitions and innovation.

Abstract

Purpose

The current research aimed to investigate the external enablement role of Digital Infrastructures (DI) in the interplay of entrepreneurial cognitions and innovation.

Design/methodology/approach

Data from the Global Entrepreneurship Monitor (GEM) and Digital Economy and Society Index (DESI) were used for analyses. This yielded a sample of 8,601 Generation Z entrepreneurs operating in 25 European countries.

Findings

Applying hierarchical moderated regressions showed that socio-cognitive components of an entrepreneurial mindset (self-efficacy, risk propensity, opportunity identification) affect innovation among Generation Z entrepreneurs. More importantly, DI plays an external enablement role in the interplay of cognitions and innovation among Generation Z entrepreneurs.

Originality/value

This study contributes to the socio-cognitive theory of entrepreneurship by integrating an external enablement perspective into the study of cognitions and entrepreneurial outcomes (here, innovation). It contributes to the digital technology perspective of entrepreneurship by connecting the conversation about the socio-cognitive perspective of entrepreneurship regarding the role of cognitions in innovation to the conversation in information systems (IS) regarding technology affordances and constraints. This study extends the application of the external enabler framework to the post-entry stage of entrepreneurial activity and integrates a generational perspective into it.

Details

International Journal of Entrepreneurial Behavior & Research, vol. 30 no. 2/3
Type: Research Article
ISSN: 1355-2554

Keywords

Article
Publication date: 2 March 2023

Xiaojun Wu, Bo Liu, Peng Li and Yunhui Liu

Existing calibration methods mainly focus on the camera laser-plane calibration of a single laser-line length, which is not convenient and cannot guarantee the consistency of the…

Abstract

Purpose

Existing calibration methods mainly focus on the camera laser-plane calibration of a single laser-line length, which is not convenient and cannot guarantee the consistency of the results when several three-dimensional (3D) scanners are involved. Thus, this study aims to provide a unified step for different laser-line length calibration requirements for laser profile measurement (LPM) systems.

Design/methodology/approach

3D LPM is the process of converting physical objects into 3D digital models, wherein camera laser-plane calibration is critical for ensuring system precision. However, conventional calibration methods for 3D LPM typically use a calibration target to calibrate the system for a single laser-line length, which needs multiple calibration patterns and makes the procedure complicated. In this paper, a unified calibration method was proposed to automatically calibrate the camera laser-plane parameters for the LPM systems with different laser-line lengths. The authors designed an elaborate planar calibration target with different-sized rings that mounted on a motorized linear platform to calculate the laser-plane parameters of the LPM systems. Then, the camera coordinates of the control points are obtained using the intersection line between the laser line and the planar target. With a new proposed error correction model, the errors caused by hardware assembly can be corrected. To validate the proposed method, three LPM devices with different laser-line lengths are used to verify the proposed system. Experimental results show that the proposed method can calibrate the LPM systems with different laser-line lengths conveniently with standard steps.

Findings

The repeatability and accuracy of the proposed calibration prototypes were evaluated with high-precision workpieces. The experiments have shown that the proposed method is highly adaptive and can automatically calibrate the LPM system with different laser-line lengths with high accuracy.

Research limitations/implications

In the repeatability experiments, there were errors in the measured heights of the test workpieces, and this is because the laser emitter had the best working distance and laser-line length.

Practical implications

By using this proposed method and device, the calibration of the 3D scanning laser device can be done in an automatic way.

Social implications

The calibration efficiency of a laser camera device is increased.

Originality/value

The authors proposed a unified calibration method for LPM systems with different laser-line lengths that consist of a motorized linear joint and a calibration target with elaborately designed ring patterns; the authors realized the automatic parameter calibration.

Details

Robotic Intelligence and Automation, vol. 43 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 19 January 2021

BinBin Zhang, Fumin Zhang and Xinghua Qu

Laser-based measurement techniques offer various advantages over conventional measurement techniques, such as no-destructive, no-contact, fast and long measuring distance. In…

Abstract

Purpose

Laser-based measurement techniques offer various advantages over conventional measurement techniques, such as no-destructive, no-contact, fast and long measuring distance. In cooperative laser ranging systems, it’s crucial to extract center coordinates of retroreflectors to accomplish automatic measurement. To solve this problem, this paper aims to propose a novel method.

Design/methodology/approach

We propose a method using Mask RCNN (Region Convolutional Neural Network), with ResNet101 (Residual Network 101) and FPN (Feature Pyramid Network) as the backbone, to localize retroreflectors, realizing automatic recognition in different backgrounds. Compared with two other deep learning algorithms, experiments show that the recognition rate of Mask RCNN is better especially for small-scale targets. Based on this, an ellipse detection algorithm is introduced to obtain the ellipses of retroreflectors from recognized target areas. The center coordinates of retroreflectors in the camera coordinate system are obtained by using a mathematics method.

Findings

To verify the accuracy of this method, an experiment was carried out: the distance between two retroreflectors with a known distance of 1,000.109 mm was measured, with 2.596 mm root-mean-squar error, meeting the requirements of the coarse location of retroreflectors.

Research limitations/implications

The research limitations/implications are as follows: (i) As the data set only has 200 pictures, although we have used some data augmentation methods such as rotating, mirroring and cropping, there is still room for improvement in the generalization ability of detection. (ii) The ellipse detection algorithm needs to work in relatively dark conditions, as the retroreflector is made of stainless steel, which easily reflects light.

Originality/value

The originality/value of the article lies in being able to obtain center coordinates of multiple retroreflectors automatically even in a cluttered background; being able to recognize retroreflectors with different sizes, especially for small targets; meeting the recognition requirement of multiple targets in a large field of view and obtaining 3 D centers of targets by monocular model-based vision.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 October 2020

Mingkang Zhang, Yongqiang Yang, Wentao Qin, Shibiao Wu, Jie Chen and Changhui Song

This study aims to focus on the optimized design and mechanical properties of gradient triply periodic minimal surface cellular structures manufactured by selective laser melting.

Abstract

Purpose

This study aims to focus on the optimized design and mechanical properties of gradient triply periodic minimal surface cellular structures manufactured by selective laser melting.

Design/methodology/approach

Uniform and gradient IWP and primitive cellular structures have been designed by the optimized function in MATLAB, and selective laser melting technology was applied to manufacture these cellular structures. Finite element analysis was applied to optimize the pinch-off problem, and compressive tests were carried out for the evaluation of mechanical properties of gradient cellular structures.

Findings

Finite element analysis shows that the elastic modulus of IWP increased as design parameter b increased, and then decreased when parameter b is higher than 5.5. The highest elastic modulus of primitive increased by 89.2% when parameter b is 6. The compressive behavior of gradient IWP and primitive shows a layer-by-layer way, and elastic modulus and first maximum compressive strength of gradient primitive are higher than that of gradient IWP. The effective energy absorption of gradient cellular structures increased as the average porosity decreased, and the effective energy absorption of gradient primitive is about twice than that of gradient IWP.

Originality/value

This paper presents an optimized design method for the pinch-off problem of gradient triply periodic minimal surface cellular structures.

Details

Rapid Prototyping Journal, vol. 26 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 August 2021

Huayi Li, Qingxian Jia, Rui Ma and Xueqin Chen

The purpose of this paper is to accomplish robust actuator fault isolation and identification for microsatellite attitude control systems (ACSs) subject to a series of space…

Abstract

Purpose

The purpose of this paper is to accomplish robust actuator fault isolation and identification for microsatellite attitude control systems (ACSs) subject to a series of space disturbance torques and gyro drifts.

Design/methodology/approach

For the satellite attitude dynamics with Lipschitz constraint, a multi-objective nonlinear unknown input observer (NUIO) is explored to accomplish robust actuator fault isolation based on a synthesis of Hinf techniques and regional pole assignment technique. Subsequently, a novel disturbance-decoupling learning observer (D2LO) is proposed to identify the isolated actuator fault accurately. Additionally, the design of the NUIO and the D2LO are reformulated into convex optimization problems involving linear matrix inequalities (LMIs), which can be readily solved using standard LMI tools.

Findings

The simulation studies on a microsatellite example are performed to prove the effectiveness and applicability of the proposed robust actuator fault isolation and identification methodologies.

Practical implications

This research includes implications for the enhancement of reliability and safety of on-orbit microsatellites.

Originality/value

This study proposes novel NUIO-based robust fault isolation and D2LO-based robust fault identification methodologies for spacecraft ACSs subject to a series of space disturbance torques and gyro drifts.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 November 2022

Tuan-Hui Shen and Cong Lu

This paper aims to develop a method to improve the accuracy of tolerance analysis considering the spatial distribution characteristics of part surface morphology (SDCPSM) and…

Abstract

Purpose

This paper aims to develop a method to improve the accuracy of tolerance analysis considering the spatial distribution characteristics of part surface morphology (SDCPSM) and local surface deformations (LSD) of planar mating surfaces during the assembly process.

Design/methodology/approach

First, this paper proposes a skin modeling method considering SDCPSM based on Non-Gaussian random field. Second, based on the skin model shapes, an improved boundary element method is adopted to solve LSD of nonideal planar mating surfaces, and the progressive contact method is adopted to obtain relative positioning deviation of mating surfaces. Finally, the case study is given to verify the proposed approach.

Findings

Through the case study, the results show that different SDCPSM have different influences on tolerance analysis, and LSD have nonnegligible and different influence on tolerance analysis considering different SDCPSM. In addition, the LSD have a greater influence on translational deviation along the z-axis than rotational deviation around the x- and y-axes.

Originality/value

The surface morphology with different spatial distribution characteristics leads to different contact behavior of planar mating surfaces, especially when considering the LSD of mating surfaces during the assembly process, which will have further influence on tolerance analysis. To address the above problem, this paper proposes a tolerance analysis method with skin modeling considering SDCPSM and LSD of mating surfaces, which can help to improve the accuracy of tolerance analysis.

Article
Publication date: 8 March 2021

Wenjie Wang, Mengran Zhang, Binxia Zhao, Linxue Liu, Ruixuan Han and Nan Wang

The purpose of this paper is to improve the degradation efficiency of Rhodamine B (RhB) by new photocatalytic materials.

265

Abstract

Purpose

The purpose of this paper is to improve the degradation efficiency of Rhodamine B (RhB) by new photocatalytic materials.

Design/methodology/approach

Binary Z-scheme g-C3N4/Bi2WO6 photocatalytic material was synthesized by the one-step hydrothermal reaction. The construction of Z-scheme heterojunction led to the rapid separation of photogenerated electrons and holes, which would degrade RhB into small molecular substances to achieve the purpose of degradation.

Findings

It was found that Bi2WO6/25%g-C3N4 displayed the highest photocatalytic activity, which was about 1.44 and 1.34 times higher than that of pure Bi2WO6 and g-C3N4, respectively. According to the trapping experiments, the superoxide radical (·O2−) was the major active species of the RhB decomposition in Bi2WO6/g-C3N4 catalysts.

Originality/value

The successful synthesis of Z-scheme Bi2WO6/g-C3N4 provides new ideas and references for the design of catalysts with high photocatalytic activity, which should have wide applications in the future.

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 August 2021

Liangjie Mao, Mingjie Cai, Qingyou Liu and Ying Zhang

The purpose of this paper is to study the multi-phase flow behaviors in solid fluidization exploitation of natural gas hydrate (NGH) and its effect on the engineering safety.

Abstract

Purpose

The purpose of this paper is to study the multi-phase flow behaviors in solid fluidization exploitation of natural gas hydrate (NGH) and its effect on the engineering safety.

Design/methodology/approach

In this paper, a multi-phase flow model considering the endothermic decomposition of hydrate is established and finite difference method is used to solve the mathematical model. The model is validated by reproducing the field test data of a well in Shenhu Sea area. Besides, optimization of design parameters is presented to ensure engineering safety during the solid fluidization exploitation of NGH in South China Sea.

Findings

To ensure the engineering safety during solid fluidization exploitation of marine NGH, taking the test well as an example, a drilling flow rate range of 40–50 L/s, drilling fluid density range of 1.2–1.23 g/cm3 and rate of penetration (ROP) range of 10–20 m/h should be recommended. Besides, pre-cooled drilling fluid is also helpful for inhibiting hydrate decomposition.

Originality/value

Systematic research on the effect of multiphase flow behaviors on the engineering safety is scare, especially for the solid fluidization exploitation of NGH in South China Sea. With the growing demand for energy, it is of great significance to ensure the engineering safety before the large-scale extraction of commercial gas from hydrate deposits. The result of this study can provide profound theoretical bases and valuable technical guidance for the commercial solid fluidization exploitation of NGH in South China Sea.

Details

Engineering Computations, vol. 39 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 13 September 2018

Wenchao Ma, Lina He, Zeng Dan, Guanyi Chen and Xuebin Lu

With the rapid development of China’s urbanisation and market economy, municipal solid waste (MSW) generation is increasing dramatically. In response to the threat of…

Abstract

With the rapid development of China’s urbanisation and market economy, municipal solid waste (MSW) generation is increasing dramatically. In response to the threat of environmental pollution and the potential value of converting waste into energy, both the government and the public are now paying more attention to MSW treatment and disposal methods. In 2014, 178.6 million tonnes of MSW was collected at a safe treatment rate of 84.8%. However, the treatment methods and the composition of MSW are influenced by the collection area, its gross domestic product, population, rainfall and living conditions. This chapter analysed the MSW composition properties of Lhasa, Tibet, compared with other cities, such as Beijing, Guangzhou and so forth. The research showed that the moisture content of MSW in Lhasa approaches 31%, which is much lower than the other cities mentioned previously. The proportion of paper and plastics (rubbers) collected was 25.67% and 19.1%, respectively. This was 1.00–3.17 times and 0.75–2.44 times more than those found in Beijing and Guangzhou, respectively. Non-combustibles can reach up to 22.5%, which was 4.03–9.11 times that of Beijing and Guangzhou, respectively. The net heating values could reach up to 6,616 kilojoule/kilogram. The food residue was only half the proportion found in other cities. Moreover, the disposal method applied in each city has also been studied and compared.

Details

Unmaking Waste in Production and Consumption: Towards the Circular Economy
Type: Book
ISBN: 978-1-78714-620-4

Keywords

21 – 30 of over 53000