Search results

1 – 10 of over 9000
Article
Publication date: 6 June 2023

Ligang Lu, Pengfei Li, Dongbo Wu, Jiawei Liang, Hui Wang and Pengpeng He

The purpose of this study is to establish an assembly accuracy analysis model of deployable arms based on Jacobian–Torsor theory to improve the assembly accuracy. Spacecraft…

Abstract

Purpose

The purpose of this study is to establish an assembly accuracy analysis model of deployable arms based on Jacobian–Torsor theory to improve the assembly accuracy. Spacecraft deployable arm is one of the core components of spacecraft. Reducing the errors in assembly process is the main method to improve the assembly accuracy of spacecraft deployable arms.

Design/methodology/approach

First, the influence of composite connecting rod, root joint and arm joint on assembly accuracy in the tandem assembly process is analyzed to propose the assembly accuracy analysis model. Second, a non-tandem assembly process of “two joints fixed-composite rod installed-flange gasket compensated” is proposed and analyzed to improve the assembly accuracy of deployable arms. Finally, the feasibility of non-tandem assembly process strategy is verified by assembly experiment.

Findings

The experiential results show that the assembly errors are reduced compared with the tandem assembly process. The errors on axes x, y and z directions decreased from 14.1009 mm, 14.2424 mm and 0.8414 mm to 0.922 mm, 0.671 mm and 0.2393 mm, respectively. The errors round axes x and y directions also decreased from 0.0050° and 0.0053° to 0.00292° and 0.00251°, respectively.

Originality/value

This paper presents an assembly accuracy analysis model of deployable arms and applies the model to calculate assembly errors in tandem assembly process. In addition, a non-tandem assembly process is proposed based on the model. The experimental results show that the non-tandem assembly process can improve the assembly accuracy of deployable arms.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 26 June 2021

Binbin Zhao, Yunlong Wang, Qingchao Sun, Yuanliang Zhang, Xiao Liang and Xuewei Liu

Assembly accuracy is the guarantee of mechanical product performance, and the characterization of the part with geometrical deviations is the basis of assembly accuracy analysis.

Abstract

Purpose

Assembly accuracy is the guarantee of mechanical product performance, and the characterization of the part with geometrical deviations is the basis of assembly accuracy analysis.

Design/methodology/approach

The existed small displacement torsors (SDT) model cannot fully describe the part with multiple mating surfaces, which increases the difficulty of accuracy analysis. This paper proposed an integrated characterization method for accuracy analysis. By analyzing the internal coupling relationship of the different geometrical deviations in a single part, the Monomer Model was established.

Findings

The effectiveness of the Monomer Model is verified through an analysis of a simulated rotor assembly analysis, and the corresponding accuracy analysis method based on the model reasonably predicts the assembly deviation of the rotor.

Originality/value

The Monomer Model realizes the reverse calculation of assembly deformation for the first time, which can be used to identify the weak links that affect the assembly accuracy, thus support the accuracy improvement in the re-assembly stage.

Details

Assembly Automation, vol. 41 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 12 August 2014

Zhangjun Jin, Cijun Yu, Jiangxiong Li and Yinglin Ke

The purpose of this paper is to propose a robot-assisted assembly system (RAAS) for the installation of a variety of small components in the aircraft assembly system. The RAAS is…

Abstract

Purpose

The purpose of this paper is to propose a robot-assisted assembly system (RAAS) for the installation of a variety of small components in the aircraft assembly system. The RAAS is designed to improve the assembly accuracy and increase the productive efficiency.

Design/methodology/approach

The RAAS is a closed-loop feedback system, which is integrated with a laser tracking system and an industrial robot system. The laser tracking system is used to evaluate the deviations of the position and orientation of the small component and the industrial robot system is used to locate and re-align the small component according to the deviations.

Findings

The RAAS has exhibited considerable accuracy improvement and acceptable assembly efficiency in aircraft assembly project. With the RAAS, the maximum position deviation of the component is reduced to 0.069 mm and the maximum orientation deviation is reduced to 0.013°.

Social implications

The RAAS is applied successfully in one of the aircraft final assembly projects in southwest China.

Originality/value

By integrating the laser tracking system, the RAAS is constructed as a closed-loop feedback system of both the position and orientation of the component. With the RAAS, the installation a variety of small components can be dealt with by a single industrial robot.

Details

Industrial Robot: An International Journal, vol. 41 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 October 2016

Yifan Jiang, Xiang Huang and Shuanggao Li

The purpose of this paper is to propose an on-line iterative compensation method combining with a feed-forward compensation method to enhance the assembly accuracy of a…

Abstract

Purpose

The purpose of this paper is to propose an on-line iterative compensation method combining with a feed-forward compensation method to enhance the assembly accuracy of a metrology-integrated robot system (MIRS).

Design/methodology/approach

By the integration of a six degrees of freedom (6DoF) measurement system (T-Mac), the robot’ movement can be tracked with real-time measurement. With the on-line measured data, the proposed iterative compensation for absolute positioning and the feed-forward compensation for relative linear motion are integrated into the assembly process to improve the assembly accuracy.

Findings

It is found that the MIRS exhibits good performance in both accuracy and efficiency with the application of the proposed compensation method. With the proposed assembly process, a component can be automatically aligned to the target in seconds, and the assembly error can be decreased to 0.021 mm for position and 0.008° for orientation on average.

Originality/value

This paper presents a 6DoF MIRS for high-precision assembly. Based on the system, a novel on-line compensation method is proposed to enhance the assembly accuracy. In this paper, the assembly accuracy and the corresponding distance parameter are given by a series of experiments as reference for assembly applications.

Details

Industrial Robot: An International Journal, vol. 43 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 September 2019

Xingyuan Wang, Zhifeng Lou, Xiaodong Wang, Yue Wang, Xiupeng Hao and Zhize Wang

The purpose of this paper is to design an automatic press-fit instrument to realize precision assembly and connection quality assessment of a small interference fitting parts…

Abstract

Purpose

The purpose of this paper is to design an automatic press-fit instrument to realize precision assembly and connection quality assessment of a small interference fitting parts, armature.

Design/methodology/approach

In this paper, an automatic press-fit instrument was developed for the technical problems of reliable clamping and positioning of the armature, automatic measurement and adjustment of the attitude and evaluation of the connection quality. To compensate for the installation error of the equipment, corresponding calibration method was proposed for each module of the instrument. Assembly strategies of axial displacement and perpendicularity were also proposed to ensure the assembly accuracy. A theoretical model was built to calculate the resistant force generated by the non-contact regions and then combined with the thick-walled cylinder theory to predict the press-fit curve.

Findings

The calibration method and assembly strategy proposed in this paper enable the press-fit instrument to achieve good alignment and assembly accuracy. A reasonable range of press-fit curve obtained from theoretical model can achieve the connection quality assessment.

Practical implications

This instrument has been used in an armature assembly project. The practical results show that this instrument can assemble the armature components with complex structures automatically, accurately, in high-efficiency and in high quality.

Originality/value

This paper provides a technical method to improve the assembly quality of small precision interference fitting parts and provides certain methodological guidelines for precision peg-in-hole assembly.

Details

Assembly Automation, vol. 39 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 5 October 2018

Feiyan Guo, Fang Zou, Jian Hua Liu, Bo Zhao and Zhongqi Wang

Coordination feature (CF) is the information carrier in dimension and shape transfer process in aircraft manufacturing. The change of its geometric size, shape, position or other…

Abstract

Purpose

Coordination feature (CF) is the information carrier in dimension and shape transfer process in aircraft manufacturing. The change of its geometric size, shape, position or other attributes would affect the consistency of accumulated errors between two or more assemblies. To identify these “key characteristics” that have a close relationship with the assembly precision, a comprehensive method was developed under digital manufacturing environment, which was based on importance calculation. The multi-hierarchy and multi-station assembly process of aircraft products were also taken into consideration.

Design/methodology/approach

First, the interaction and evaluation relationship between components at different manufacturing stages was decomposed with a hierarchical net. Second, to meet coordination accuracy requirements, with the integrated application of Taguchi quality loss function, accuracy principal and error correction coefficient H, the quality loss between target features and candidate features at adjacent assembly hierarchies were calculated, which was based on their precision variation. Third, the influence degree and affected degree of the features were calculated with DEMATEL (decision-making trial and evaluation laboratory) method, and the concepts of centrality degree index and cause degree index were proposed for calculating the complete importance degree to eventually identify the CFs.

Findings

Based on the proposed methodology, CFs, affecting the skin profile and the flush coordination accuracy, were successfully identified at different assembly hierarchies to a certain type of wing flap component.

Originality/value

Benefit results for the engineering application showed that the deviation of skin profile was more accurate than before, and the tolerance was also closer to the centerline of required assembly precision range. Moreover, the stability in the assembly process was increased by 26.9 per cent, which could bring a higher assembly quality and an enhancement on aircraft’s flight performance.

Details

Assembly Automation, vol. 38 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 28 January 2014

Cédric Clévy, Ion Lungu, Kanty Rabenorosoa and Philippe Lutz

– This paper aims to deal with the measurement of positioning accuracies of microscale components assembled to fabricate micro-optical benches (MOB).

Abstract

Purpose

This paper aims to deal with the measurement of positioning accuracies of microscale components assembled to fabricate micro-optical benches (MOB).

Design/methodology/approach

The concept of MOB is presented to explain how to fabricate optical MEMS based on out-of-plane micro-assembly of microcomponents. This micro-assembly platform includes a laser sensor that enables to measure the position of the microcomponent after its assembly. The measurement set-up and procedure is displayed and applied on several micro-assembly sets.

Findings

The measurement system provides results with maximum deviation smaller than ±0.005°. Based on this measurement system and micro-assembly procedure displayed in the article, it is shown that it is possible to obtain a positioning accuracy up to 0.009°.

Originality/value

These results clearly show that micro-assembly is a possible way to fabricate complex, heterogeneous and 3D optical MEMS with very good optical performances.

Details

Assembly Automation, vol. 34 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 September 2017

Dou Wang, Xiaodong Shao, Xiaobo Ge and Simeng Liu

The purpose of this study is to guarantee assembly quality and reduce the number of manufacturing cycles required for an reflector of the large reflector antenna. An optimal…

Abstract

Purpose

The purpose of this study is to guarantee assembly quality and reduce the number of manufacturing cycles required for an reflector of the large reflector antenna. An optimal approach combining a finite element method (FEM) with a genetic algorithm (GA) is developed to simulate and optimize reflector assembly before the assembly stage.

Design/methodology/approach

The chromosomes of GA are encoded with the consideration of the factors that affect the assembly of reflector. The fitness function of the GA consists of the assembly accuracy obtained from simulation, with evaluation of the assembly time consumption and labor cost. The algorithm will terminate when the GA is finished or the simulation results meet the permissible accuracy. Taking the assembly process of the reflector into account, an FEM based on a “life – death element” technique is introduced to quickly and precisely simulate reflector assembly.

Findings

A case study is presented, to which the proposed approach is applied. The results of finite element simulation demonstrate that the proposed FEM can simulate the reflector assembly process with oversimplified modeling and accurate simulation results. The optimal approach provides an accurate and efficient method for reflector assembly sequence planning indicated by the comparison of the measurements and calculation results.

Originality/value

The results also demonstrate that the proposed approach has practical significance for guiding reflector assembly in engineering practice.

Details

Assembly Automation, vol. 37 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 23 November 2021

Md Helal Miah, Jianhua Zhang and Dharmahinder Singh Chand

This paper aims to illustrate the tolerance optimization method based on the assembly accuracy constrain, precession constrain and the cost of production of the assembly product.

Abstract

Purpose

This paper aims to illustrate the tolerance optimization method based on the assembly accuracy constrain, precession constrain and the cost of production of the assembly product.

Design/methodology/approach

A tolerance optimization method is an excellent way to perform product assembly performance. The tolerance optimization method is adapted to the process analysis of the hatch and skin of an aircraft. In this paper, the tolerance optimization techniques are applied to the tolerance allocation for step difference analysis (example: step difference between aircraft cabin door and fuselage outer skin). First, a mathematical model is described to understand the relationship between manufacturing cost and tolerance cost. Second, the penalty function method is applied to form a new equation for tolerance optimization. Finally, MATLAB software is used to calculate 170 loops iteration to understand the efficiency of the new equation for tolerance optimization.

Findings

The tolerance optimization method is based on the assembly accuracy constrain, machinery constrain and the cost of production of the assembly product. The main finding of this paper is the lowest assembly and lowest production costs that met the product tolerance specification.

Research limitations/implications

This paper illustrated an efficient method of tolerance allocation for products assembly. After 170 loops iterations, it founds that the results very close to the original required tolerance. But it can easily say that the different number of loops iterations may have a different result. But optimization result must be approximate to the original tolerance requirements.

Practical implications

It is evident from Table 4 that the tolerance of the closed loop is 1.3999 after the tolerance distribution is completed, which is less than and very close to the original tolerance of 1.40; the machining precision constraint of the outer skin of the cabin door and the fuselage is satisfied, and the assembly precision constraint of the closed loop is satisfied.

Originality/value

The research may support further research studies to minimize cost tolerance allocation using tolerance cost optimization techniques, which must meet the given constrain accuracy for assembly products.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 April 2014

Yong-long Tang, Zhi-jing Zhang, Xin Ye and Xiao-feng Zhang

– The purpose of this paper is to propose a novel method of coaxial optical precision alignment based on surface roughness and reflectiveness matching.

Abstract

Purpose

The purpose of this paper is to propose a novel method of coaxial optical precision alignment based on surface roughness and reflectiveness matching.

Design/methodology/approach

The micro-assembly experiment system set-up was constructed according to the principle of the coaxial optical alignment. The coaxial optical alignment error is theoretically analyzed and calculated. When the prism orthogonal alignment mechanism produces the error of 0.001°, the theoretical deviation was less than 0.87 μm and the actual experimental micro-assembly platform assembly accuracy exceeded 3 μm. A peg-in-hole precise assembly of punching pin micro-assembly experiment was done in order to validate feasibility of this method.

Findings

The results indicate that coaxial optical precision alignment could be used for the assembly of complex micro-heterogeneous system which is integrated by similar devices, such as 3D complex micro-structures, silicon micro-electro-mechanical system (MEMS) devices and non-silicon MEMS devices with flat structure.

Originality/value

The paper provides certain methodological guidelines for MEMS for high precision automatic assembly of complex 3D micro-structures.

Details

Assembly Automation, vol. 34 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 9000