To read the full version of this content please select one of the options below:

Observer-based robust actuator fault isolation and identification for microsatellite attitude control systems

Huayi Li (Research Center of Satellite Technology, Harbin Institute of Technology , Harbin, China)
Qingxian Jia (College of Astronautics, Nanjing University of Aeronautics and Astronautics , Nanjing, China)
Rui Ma (College of Astronautics, Nanjing University of Aeronautics and Astronautics , Nanjing, China)
Xueqin Chen (Research Center of Satellite Technology, Harbin Institute of Technology , Harbin, China)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 14 August 2021

Issue publication date: 6 September 2021

Downloads
61

Abstract

Purpose

The purpose of this paper is to accomplish robust actuator fault isolation and identification for microsatellite attitude control systems (ACSs) subject to a series of space disturbance torques and gyro drifts.

Design/methodology/approach

For the satellite attitude dynamics with Lipschitz constraint, a multi-objective nonlinear unknown input observer (NUIO) is explored to accomplish robust actuator fault isolation based on a synthesis of Hinf techniques and regional pole assignment technique. Subsequently, a novel disturbance-decoupling learning observer (D2LO) is proposed to identify the isolated actuator fault accurately. Additionally, the design of the NUIO and the D2LO are reformulated into convex optimization problems involving linear matrix inequalities (LMIs), which can be readily solved using standard LMI tools.

Findings

The simulation studies on a microsatellite example are performed to prove the effectiveness and applicability of the proposed robust actuator fault isolation and identification methodologies.

Practical implications

This research includes implications for the enhancement of reliability and safety of on-orbit microsatellites.

Originality/value

This study proposes novel NUIO-based robust fault isolation and D2LO-based robust fault identification methodologies for spacecraft ACSs subject to a series of space disturbance torques and gyro drifts.

Keywords

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (Grant No. 61703276), High-level Innovation and Entrepreneurship Talents Introduction Program of Jiangsu Province of China (2019) and National Defense Science and Technology Funds for Excellent Young Scholar (Grant No. 2017-JCJQ-ZQ-034).

The authors gratefully acknowledge the Editors and anonymous reviewers for their helpful comments and suggestions, which have improved the quality of this paper.

Citation

Li, H., Jia, Q., Ma, R. and Chen, X. (2021), "Observer-based robust actuator fault isolation and identification for microsatellite attitude control systems", Aircraft Engineering and Aerospace Technology, Vol. 93 No. 7, pp. 1145-1155. https://doi.org/10.1108/AEAT-10-2020-0224

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited