Search results

1 – 10 of over 53000
Article
Publication date: 11 December 2023

Zehui Bu, Jicai Liu and Xiaoxue Zhang

The paper aims to elucidate effective strategies for promoting the adoption of green technology innovation within the private sector, thereby enhancing the value of public–private…

Abstract

Purpose

The paper aims to elucidate effective strategies for promoting the adoption of green technology innovation within the private sector, thereby enhancing the value of public–private partnership (PPP) projects during the operational phase.

Design/methodology/approach

Utilizing prospect theory, the paper considers the government and the public as external driving forces. It establishes a tripartite evolutionary game model composed of government regulators, the private sector and the public. The paper uses numerical simulations to explore the evolutionary stable equilibrium strategies and the determinants influencing each stakeholder.

Findings

The paper demonstrates that government intervention and public participation substantially promote green technology innovation within the private sector. Major influencing factors encompass the intensity of pollution taxation, governmental information disclosure and public attention. However, an optimal threshold exists for environmental publicity and innovation subsidies, as excessive levels might inhibit technological innovation. Furthermore, within government intervention strategies, compensating the public for their participation costs is essential to circumvent the public's “free-rider” tendencies and encourage active public collaboration in PPP project innovation.

Originality/value

By constructing a tripartite evolutionary game model, the paper comprehensively examines the roles of government intervention and public participation in promoting green technology innovation within the private sector, offering fresh perspectives and strategies for the operational phase of PPP projects.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Book part
Publication date: 13 August 2018

Robert L. Dipboye

Abstract

Details

The Emerald Review of Industrial and Organizational Psychology
Type: Book
ISBN: 978-1-78743-786-9

Article
Publication date: 11 February 2021

Mingyang Liu, Huifen Zhu, Guangjun Gao, Chen Jiang and G.R Liu

The purpose of this paper is to investigate a novel stabilization scheme to handle convection and pressure oscillation in the process of solving incompressible laminar flows by…

Abstract

Purpose

The purpose of this paper is to investigate a novel stabilization scheme to handle convection and pressure oscillation in the process of solving incompressible laminar flows by finite element method (FEM).

Design/methodology/approach

The semi-implicit stabilization scheme, characteristic-based polynomial pressure projection (CBP3) consists of the Characteristic-Galerkin method and polynomial pressure projection. Theoretically, the proposed scheme works for any type of element using equal-order approximation for velocity and pressure. In this work, linear 3-node triangular and 4-node tetrahedral elements are the focus, which are the simplest but most difficult elements for pressure stabilizations.

Findings

The present paper proposes a new scheme, which can stabilize FEM solution for flows of both low and relatively high Reynolds numbers. And the influence of stabilization parameters of the CBP3 scheme has also been investigated.

Research limitations/implications

The research in this work is limited to the laminar incompressible flow.

Practical implications

The verification and validation of the CBP3 scheme are conducted by several 2 D and 3 D numerical examples. The scheme could be used to deal with more practical fluid problems.

Social implications

The application of scheme to study complex hemodynamics of patient-specific abdominal aortic aneurysm is also presented, which demonstrates its potential to solve bio-flows.

Originality/value

The paper simulated 2 D and 3 D numerical examples with superior results compared to existing results and experiments. The novel CBP3 scheme is verified to be very effective in handling convection and pressure oscillation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 November 2021

Mingyang Liu, Guangjun Gao, Huifen Zhu and Chen Jiang

The purpose of this paper is to investigate the feasibility of solving turbulent flows based on smoothed finite element method (S-FEM). Then, the differences between S-FEM and…

Abstract

Purpose

The purpose of this paper is to investigate the feasibility of solving turbulent flows based on smoothed finite element method (S-FEM). Then, the differences between S-FEM and finite element method (FEM) in dealing with turbulent flows are compared.

Design/methodology/approach

The stabilization scheme, the streamline-upwind/Petrov-Galerkin stabilization is coupled with stabilized pressure gradient projection in the fractional step framework. The Reynolds-averaged Navier-Stokes equations with standard k-epsilon model are selected to solve turbulent flows based on S-FEM and FEM. Standard wall functions are applied to predict boundary layer profiles.

Findings

This paper explores a completely new application of S-FEM on turbulent flows. The adopted stabilization scheme presents a good performance on stabilizing the flows, especially for very high Reynolds numbers flows. An advantage of S-FEM is found in applying wall functions comparing with FEM. The differences between S-FEM and FEM have been investigated.

Research limitations/implications

The research in this work is limited to the two-dimensional incompressible turbulent flow.

Practical implications

The verification and validation of a new combination are conducted by several numerical examples. The new combination could be used to deal with more complicated turbulent flows.

Social implications

The applications of the new combination to study basic and complex turbulent flow are also presented, which demonstrates its potential to solve more turbulent flows in nature and engineering.

Originality/value

This work carries out a great extension of S-FEM in simulations of fluid dynamics. The new combination is verified to be very effective in handling turbulent flows. The performances of S-FEM and FEM on turbulent flows were analyzed by several numerical examples. Superior results were found compared with existing results and experiments. Meanwhile, S-FEM has an advantage of accuracy in predicting boundary layer profile.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 February 2021

Xueguang Yu, Xintian Liu, Xu Wang and Xiaolan Wang

This study aims to propose an improved affine interval truncation algorithm to restrain interval extension for interval function.

Abstract

Purpose

This study aims to propose an improved affine interval truncation algorithm to restrain interval extension for interval function.

Design/methodology/approach

To reduce the occurrence times of related variables in interval function, the processing method of interval operation sequence is proposed.

Findings

The interval variable is evenly divided into several subintervals based on correlation analysis of interval variables. The interval function value is modified by the interval truncation method to restrain larger estimation of interval operation results.

Originality/value

Through several uncertain displacement response engineering examples, the effectiveness and applicability of the proposed algorithm are verified by comparing with interval method and optimization algorithm.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Book part
Publication date: 20 June 2017

David Shinar

Abstract

Details

Traffic Safety and Human Behavior
Type: Book
ISBN: 978-1-78635-222-4

Article
Publication date: 11 November 2022

Gang Shi and Honglei Shang

Traditional algorithms require at least two complete vector observations to estimate orientation parameters. However, sensor faults and disturbances may cause some components of…

Abstract

Purpose

Traditional algorithms require at least two complete vector observations to estimate orientation parameters. However, sensor faults and disturbances may cause some components of vector observations unavailable. This paper aims to propose algorithms to realize orientation estimation using vector observations with one or two components lost.

Design/methodology/approach

The fundamental of the proposed method is using norm equation and dot product equation to estimate the lost components, then, using an improved TRIAD to calculate attitude matrix. Specific algorithms for one and two lost components cases are constructed respectively, and the nonuniqueness of orientation estimation is analyzed from a geometric point of view. At last, experiments are performed to test the proposed algorithms.

Findings

The loss of components results in the loss of orientation information. The introduction of the norm equation and dot product equation can partially compensate for the loss of information. Experiment results and analysis show that the proposed algorithms can provide effective orientation estimation, and in vast majority of applications, the proposed algorithms can provide a unique solution in one lost component case and double solutions in two lost components case.

Originality/value

The proposed method addresses the problem of orientation estimation when one or two components of vector observations are unavailable. The introduction of the norm equation and dot product equation makes the calculation cost low, while the analyses from a geometric point of view makes the study of nonuniqueness more intuitive.

Details

Sensor Review, vol. 42 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 December 2022

Xiang Liu and G.P. Cai

This paper studies the nonlinear dynamics of membrane structure considering wrinkling effect. The coupling between wrinkles and vibration is investigated elaborately, and new…

Abstract

Purpose

This paper studies the nonlinear dynamics of membrane structure considering wrinkling effect. The coupling between wrinkles and vibration is investigated elaborately, and new insight on the dynamics of wrinkled membrane is unveiled.

Design/methodology/approach

Based on the stability theory of plates and shells, the wrinkling model of the membrane structure is established. Considering the effects of wrinkling and nonlinearity, the dynamic response is calculated with NewMark method.

Findings

Wrinkling will impact the dynamics of the membrane structure significantly for asymmetrical tension loading cases, dynamic response of the wrinkled membrane structure can be classified into three categories: when the vibration is small, the dynamics of the wrinkled membrane structure will behave linearly, and the wrinkles will only affect the dynamic properties as initial conditions; when the vibration is relatively large, the wrinkles will interact with the vibration during the dynamic process, and the dynamics of the structure shows very complex features; when the vibration is large enough, the dynamics will be dominated by the geometric nonlinearity of large-amplitude vibration.

Originality/value

In the previous works on dynamics of wrinkled membrane structure, only the vibration modes have been studied, which means all those investigations are confined with linear vibration; little research has been conducted on the nonlinear dynamics of wrinkled membrane structure. In view of this, this paper presents an investigation of dynamic properties of membrane structure considering the wrinkling and geometric nonlinear effects. This research work presents some novel discoveries on the nonlinear dynamics of wrinkled membrane.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 December 2020

Jiajun Liu and Pingyu Jiang

Social manufacturing has emerged. It aims to integrate the manufacturing resources of micro- and small-scale manufacturing enterprises (MSMEs) and help MSMEs cope with the…

551

Abstract

Purpose

Social manufacturing has emerged. It aims to integrate the manufacturing resources of micro- and small-scale manufacturing enterprises (MSMEs) and help MSMEs cope with the dynamic, service-oriented and personalized market demands. In social manufacturing, MSMEs cooperate with each other through manufacturing resource sharing. However, because MSMEs are distributed and decentralized, the efficiency of establishing reliable cooperation between MSMEs is relatively low. Therefore, this paper presents a blockchain-driven cyber-credit evaluation system (BCCES) to implement distributed cyber-credit evaluation. BCCES can provide reliable cyber-credit for distributed MSMEs without the trusted third party. This can improve the efficiency of establishing reliable cooperation among unauthentic MSMEs.

Design/methodology/approach

The paper proposes a BCCES to evaluate MSMEs' cyber-credit in decentralized environment. In BCCES, a cyber-credit evaluation model is proposed by improving set pair analysis (SPA) method, and cyber-credit smart contract and distributed consensus mechanism are designed according to the runtime logic of distributed cyber-credit evaluation.

Findings

The results confirmed that BCCES is feasible and effective to implement cyber-credit evaluation without the trusted third party. With the advantages of blockchain, BCCES can automatically realize cyber-credit evaluation through smart contract and distributed consensus. At the same time, BCCES can evaluate the real-time cyber-credit of MSMEs based on their latest service evaluation. In addition, we can design corresponding smart contracts according to actual requirements, which makes blockchain applicable to different distributed scenarios.

Originality/value

The paper combines blockchain and SPA to implement cyber-credit evaluation in social manufacturing and provides a new feasible idea for cyber-credit evaluation without the trusted third party. This can also provide MSMEs a reference of applying blockchain to other distributed scenarios through combining smart contract and different algorithms.

Details

Industrial Management & Data Systems, vol. 121 no. 4
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 12 April 2013

M. Saleem, A. Hossain and R.S.R. Gorla

The purpose of this paper is to conduct a numerical study of the effect of magnetic field on thermocapillary convection of a two layered system of Newtonian fluids, confined in a…

Abstract

Purpose

The purpose of this paper is to conduct a numerical study of the effect of magnetic field on thermocapillary convection of a two layered system of Newtonian fluids, confined in a rectangular cavity. The flow within the cavity is subject to the horizontal temperature gradient. Attention is focused on how the heat transfer and flow properties are affected subject to the applied magnetic field, particularly in the lower layer. For this purpose, the fluid combinations of di‐Boron Trioxide (B2O3) over Gallium Arsenide GaAs (III‐V), and Silicon oil 10 cSt over Fluorinert FC 70 are considered in the present study.

Design/methodology/approach

The non‐linear two‐dimensional vorticity transport equations along with the energy equations are solved for the two liquid layers using the Alternate Direct Implicit method, whereas the elliptic partial differential equations of the stream function are solved using the Successive Over Relaxation method.

Findings

It was found that despite the significant reduction of flow in the two layers, the number of cells in the lower layer increases with the increase in Hartmann number Ha. However, the flow intensity decreases with the increase in Hartmann number. This decrease is more pronounced in the lower layer, as compared to the upper layer. The numerical scheme employed for the solution is found to be in good agreement with the previous work.

Research limitations/implications

The analysis is made for two layer liquid system with undeformable interface and free surface. The detailed study of the effect of magnetic field on oscillatory Marangoni convection in two layer system with deformable interface is left for future work.

Practical implications

The approach is useful in optimizing the flow properties of the fluids in a two layer system, particularly the lower layer, to yield the results of potential practical interest.

Originality/value

The results of the study may be of some interest to researchers in the field of semiconductor technology, as the melt control is intensively investigated for the development in the manufacture of defect‐free semiconductors and crystals.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 53000