Search results

1 – 10 of over 1000
Article
Publication date: 27 September 2018

Recep Eren, Ozge Celik, Fatih Suvari and Seyit Ali Koksal

Sectional warping is the most widely used warp preparation process in weaving. Winding all warp sections with the same length and same tension is a key factor for a good quality…

Abstract

Purpose

Sectional warping is the most widely used warp preparation process in weaving. Winding all warp sections with the same length and same tension is a key factor for a good quality warp preparation. It is required that winding thickness (increase in radius due to warp winding) remains the same within and between warp sections. The purpose of this paper is to investigate winding thickness variations within and between warp sections, which can lead to quality problems in woven fabrics.

Design/methodology/approach

A measurement system is developed and then an experimental investigation into winding thickness variations is carried out. Winding thickness is measured with respect to number of drum revolutions using a laser sensor with 20 microns resolution. The number of drum revolutions and drum angular position are measured by an incremental encoder. Both sensors are mounted on an industrial sectional warping machine. A real-time software written in C programming language collects and records the data for all sections of warp with respect to drum number of revolutions and then results are evaluated to determine winding thickness variations.

Findings

Results show that warp sheet thickness starts with a higher value and it decreases up to around 30 drum revolutions and then it remains constant or decreases very slightly which can be considered as insignificant from practical point of view. Warp sheet thickness (i.e. thickness of one warp layer) fluctuates within each section up to 10 percent CV with five drum revolutions average warp sheet thickness. There are also warp sheet thickness variations between warp sections up to 3 mm.

Originality/value

Considering the short of practical research results on winding thickness variations in the literature, results of this study will be an original contribution to understanding winding thickness variation level. Also, results presented in this paper can be used to develop control algorithms for thickness control in sectional warping machines.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 November 2020

Jérôme Marault, Abdelmounaïm Tounzi, Frédéric Gillon and Michel Hecquet

For a given rotor, the study of the impact of stator MMF from different winding distributions is usually carried out using analytical model under some simplifying hypotheses to…

Abstract

Purpose

For a given rotor, the study of the impact of stator MMF from different winding distributions is usually carried out using analytical model under some simplifying hypotheses to limit time computation. To get more accurate results, finite element model is thus more suitable. However, testing different combinations of stator windings with the same rotor can be tedious when considering the stator slots. Indeed, this introduces mesh constraint, reluctance variation of the air gap and possibly taking into account of the connection between stator coils. To avoid this, a current sheet supplied such to represent the stator MMF and spread all around the inner slotless stator surface can be used. In addition, such an approach can be very useful to didactically assess the effect of each winding space harmonic on machine performance separately. The purpose of this paper is to use a current sheet coupled to an external analytical tool in order to easily test different windings or to quantify the effect of a given spatial harmonic of the winding.

Design/methodology/approach

In the proposed approach, the current sheet supply is obtained from an analytical tool that allows determining the spatiotemporal stator MMF of any winding considered. Moreover, stator teeth height is not modelled, and only the thickness of the stator yoke is considered along with the same air gap thickness. Results with the proposed approach are compared to the real stator modelling for two different winding configurations. Last, linear and non-linear magnetic material behaviours are investigated to validate the proposed approach in term of magnetic distribution.

Findings

For both studied cases, results in term of local and global physical quantities show good agreement between the real stator modelling and the proposed approach.

Originality/value

Current sheet is used with finite element model to study the inherent effect of different winding configurations on local and global physical quantities of an AC electrical machine. The proposed approach avoids the constraints in terms of stator slot geometry and electrical circuit definition. This is very useful to quickly test different winding configurations or to isolate a specific winding space harmonic to quantify its effect on the electrical performances. This cannot be performed using classical modelling as all space harmonics are taken into account.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 October 2020

Zhun Li, Guang Pan and KeChun Shen

The objective of this paper is to investigate numerically the buckling behavior of submersible composite cylinders.

Abstract

Purpose

The objective of this paper is to investigate numerically the buckling behavior of submersible composite cylinders.

Design/methodology/approach

By means of FEM and golden section method, the search of hoop winding layers, longitudinal winding layers and helical winding layers are studied to optimize the buckling pressure. Considering the mid-strengthening cylinder, the size and distribution of stiffeners are studied systematically.

Findings

The results show that laying the hoop winding layers in the two outer sidewalls and the longitudinal winding layers in the middle of the shell is helpful to increase the buckling pressure, and the optimal helical winding angle changes with slenderness ratio.

Originality/value

For mid-strengthening cylinder, the effect of helical winding angle of stiffener on buckling pressure becomes weak gradually with the increase of stiffener thickness. With the increasing of the spacing between stiffeners, the buckling pressure increases first and decreases later. What is more, the mid-strengthening cylinder is less sensitive to the initial geometric imperfections than unstiffened shells.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 September 2021

Mohammad Reza Alizadeh Pahlavani and Hamed Tahanian

Design of small disc-type permanent magnet (PM) brushed DC motors for servomechanisms is challenging. The purpose of this paper is to propose a special coreless double-sided…

Abstract

Purpose

Design of small disc-type permanent magnet (PM) brushed DC motors for servomechanisms is challenging. The purpose of this paper is to propose a special coreless double-sided structure. This easy to manufacture motor has two set of shifted concentrated windings on both sides of the rotor. All of the coils in each winding are simply connected in series. A simple arcless commutator, which shares the features of both the usual commutators and slip rings, is connected to each winding at only two points.

Design/methodology/approach

By replacing the PMs with an equivalent current density, main design equations of the motor have been derived through the solving of scalar Poisson equation. A radial division technique has been used to take the radial variations into account. This provides the ability of considering various shapes of coils and PMs. A novel iterative algorithm has been proposed to design a motor with high torque capability, compared to other coreless counterparts. Some design variables are obtained based on an independent optimization problem, which maximizes the active portion of windings. The other variables are calculated in such a way that the design requirements are satisfied.

Findings

The feasibility and capability of the new structure have been proved by prototyping a sample motor. Comparing the design outputs with the results of the 3D finite element analysis and experimental tests shows a good agreement. This verifies the accuracy of the proposed design method.

Originality/value

A new structure for PM brushed DC motors and a novel algorithm for its design has been developed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 May 2022

Chang Li, Xingui Zhou, Quanchao Gu, Xingheng Yan and Honglei Wang

A continuous chemical vapor deposition (CVD) method has been used to fabricate pyro-carbon (PyC) coating on continuous silicon carbide (SiC) fibers. The paper aims to evaluate…

Abstract

Purpose

A continuous chemical vapor deposition (CVD) method has been used to fabricate pyro-carbon (PyC) coating on continuous silicon carbide (SiC) fibers. The paper aims to evaluate these coated fibers by testing filament tensile and using microstructure characterization.

Design/methodology/approach

The continuous SiC fiber-reinforced SiC matrix (SiC/SiC) composite is widely studied in aerospace and nuclear applications. The PyC is the probable option in fusion and fast reactor. However, the conventional fabrication method of PyC coating has some drawbacks influencing performance and efficiency.

Findings

The results showed that PyC-coated SiC fibers with continuous CVD method are more straight than conventional ones and residual deformations could not be observed, and these PyC coatings have complete geometry and uniform thickness. In different process conditions, the thickness of PyC coating could control from ∼100 to ∼1,000 nm.

Originality/value

The coated SiC fibers in a lower gas ratio (1:7 to 1:3), lower pressure (500–1,000 Pa) and appropriate winding speed (3 to 5 rpm) have relative high filament tensile strength (∼3.5 to ∼3.9 GPa). And the strength of coated SiC fibers has a negative correlation with the measured thickness of PyC coating. A distinctive growth process was discovered in the continuous CVD method. In a certain range, the quicker growing rate of PyC is obtained in shorter deposition time which means an efficient and quality method could be applied to fabricate coatings.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 July 2008

Stéphane Duchesne, J‐Ph. Lecointe, F. Périsse and Ewa Napieralska‐Juszczak

This paper aims to propose a high‐frequency (HF) model able to compute the flux density in the vicinity of the laminated stator core of an AC machine.

Abstract

Purpose

This paper aims to propose a high‐frequency (HF) model able to compute the flux density in the vicinity of the laminated stator core of an AC machine.

Design/methodology/approach

Experiments form the main approach. Analytical results previously obtained with a simplified rectangular laminated structure are confirmed with a standard cylindrical magnetic core.

Findings

Three frequency domains are defined, depending on the skin depth relative to the thickness of the magnetic sheets. A methodological approach is proposed for each domain. For higher frequencies, the magnetic core can be considered as transparent for external field computation.

Research limitations/implications

The HF model is valid for skin depths much lower than the thickness of the magnetic sheets.

Practical implications

The proposed HF model provides a link between the weak field measured in the natural void existing between the stator core and the housing of large electrical machines. With such a link, it is possible to develop a new monitoring system able to detect and to localize the partial discharges in the stator winding of a large machine.

Originality/value

The low‐frequency limit of the model has been measured. It corresponds to a ratio of 1/40 between the skin depth and the magnetic sheet thickness. Therefore this model offers a new perspective for maintenance applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 September 2012

Lidija Petkovska, Paul Lefley and Goga Cvetkovski

The paper presents design development of a novel high‐performance low‐cost 6/4 pole permanent magnet brushless DC (PMBLDC) motor. The objective is to show how the cogging torque…

Abstract

Purpose

The paper presents design development of a novel high‐performance low‐cost 6/4 pole permanent magnet brushless DC (PMBLDC) motor. The objective is to show how the cogging torque of this new design is minimised by determining the optimum stator pole arc length and the best shoe thickness.

Design/methodology/approach

At the beginning a step‐by‐step design synthesis of a reference 6/4 pole PMBLDC motor with concentrated 3‐phase windings and asymmetric stator pole arcs is presented. It is followed by a full performance analysis of the reference motor. The FEM for electromagnetic field computation is employed. The characteristics of the motor are calculated and analysed. By simple variation of the stator pole geometry, two‐stage design optimisation for cogging torque minimisation is performed, and an optimised motor model is proposed. The comparative analyses of the reference and optimised motor models show the advantages of the proposed novel design.

Findings

The focus is to show the sensitivity of the cogging torque due to changes in the stator pole shoe design parameters, such as arc length and thickness, which are discretely changed inside the prescribed constraints, and the solution matrix is derived. It was found the optimised stator pole design, providing minimum cogging torque, has the original arc length 85° and pole shoe thickness 4 mm. Thus, the peak‐cogging torque from 0.294 Nm is reduced to respectable value 0.142 Nm.

Originality/value

The paper presents an original approach to synthesis of 6/4 PMBLDC new structured motor. A two‐step design procedure is introduced and optimised stator geometry is defined, minimising the cogging torque and, at the same time, improving the profile of back electromotive force (EMF) of the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 September 2018

Robert Goraj

The purpose of this paper is to devise an analytical approach to calculate conductor winding losses, considering multiple contributing aspects simultaneously. These include the…

Abstract

Purpose

The purpose of this paper is to devise an analytical approach to calculate conductor winding losses, considering multiple contributing aspects simultaneously. These include the geometric configuration of coil windings, frequency of the electric current and the dependency on the coil temperature, derived studying a coupled fluid–solid model considering the cooling system characteristics. The obtained results allow identifying power loss trends according to such system variables as coolant inlet temperature or overall flow rate of the motor.

Design/methodology/approach

An easy-to-use coupled analytical approach is applied, which is suitable for rapid estimations of the impact of parameter variation on the resulting conductor winding power losses that facilitates decision-making in the design process of electric aircraft engines.

Findings

In the considered cooling parameters, the overall conductor winding power losses vary approximately between 6 kW and 7.2 kW. More than 95 per cent of this loss is because of direct current losses. These losses cause the variation in maximal coil temperature ranging between 115°C and 170°C.

Practical implications

The SP260D motor is set and was currently tested in Extra 330. It recently broke two world records.

Social implications

One of the current trends in aircraft engineering is electric aircraft. Advantages of electric aircraft include improved manoeuvrability because of greater torque from electric motors, increased safety because of decreased chance of mechanical failure, less risk of explosion or fire in the event of a collision and less noise. There will be environmental and cost benefits associated with the elimination of dependency on fossil fuels and resultant emissions.

Originality/value

The use of a novel fluid–solid interaction model for predicting conductor winding power loss of the SP260D electric aircraft motor has not been done earlier. A novel alternative derivation of the widely applied Dowell’s formula (Dowell, 1966) is presented for the estimation of proximity losses in square winding conductors.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 1000