Search results

1 – 10 of over 2000
Article
Publication date: 1 October 1990

THE Laser Tracer LT4400 uses a non‐contact method to measure edge position and small diameters up to 2mm. With two instruments shaft diameters and widths up to 500mm can be…

Abstract

THE Laser Tracer LT4400 uses a non‐contact method to measure edge position and small diameters up to 2mm. With two instruments shaft diameters and widths up to 500mm can be handled. Resolutions down to 0.0005mm can be obtained with precision repetition rates of 500Hz.

Details

Aircraft Engineering and Aerospace Technology, vol. 62 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 27 September 2018

Recep Eren, Ozge Celik, Fatih Suvari and Seyit Ali Koksal

Sectional warping is the most widely used warp preparation process in weaving. Winding all warp sections with the same length and same tension is a key factor for a good quality…

Abstract

Purpose

Sectional warping is the most widely used warp preparation process in weaving. Winding all warp sections with the same length and same tension is a key factor for a good quality warp preparation. It is required that winding thickness (increase in radius due to warp winding) remains the same within and between warp sections. The purpose of this paper is to investigate winding thickness variations within and between warp sections, which can lead to quality problems in woven fabrics.

Design/methodology/approach

A measurement system is developed and then an experimental investigation into winding thickness variations is carried out. Winding thickness is measured with respect to number of drum revolutions using a laser sensor with 20 microns resolution. The number of drum revolutions and drum angular position are measured by an incremental encoder. Both sensors are mounted on an industrial sectional warping machine. A real-time software written in C programming language collects and records the data for all sections of warp with respect to drum number of revolutions and then results are evaluated to determine winding thickness variations.

Findings

Results show that warp sheet thickness starts with a higher value and it decreases up to around 30 drum revolutions and then it remains constant or decreases very slightly which can be considered as insignificant from practical point of view. Warp sheet thickness (i.e. thickness of one warp layer) fluctuates within each section up to 10 percent CV with five drum revolutions average warp sheet thickness. There are also warp sheet thickness variations between warp sections up to 3 mm.

Originality/value

Considering the short of practical research results on winding thickness variations in the literature, results of this study will be an original contribution to understanding winding thickness variation level. Also, results presented in this paper can be used to develop control algorithms for thickness control in sectional warping machines.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 June 2011

Mohammed Omar, Konda Reddy Thotti, Rohit Parvataneni, Yi Zhou, Abed Alraoof Mayyas and Ala Qattawi

The purpose of this paper is to investigate an optical‐based scanning modality for the real‐time measurements of automotive interior gaps.

Abstract

Purpose

The purpose of this paper is to investigate an optical‐based scanning modality for the real‐time measurements of automotive interior gaps.

Design/methodology/approach

The hardware is based on a charge‐coupled device detector acquiring a laser illumination. The laser is projected on multitude of substrates with different reflectivities and surface profiles; while the scanning is progressed manually through a hand‐held setup.

Findings

The proposed software identifies the optical gap location automatically and establishes a dynamic field of view.

Research limitations/implications

The study conducts a tool reliability and repeatability study that yield an accuracy of 0.08 mm and a repeatability of less than 6.5 percent as user bias. The developed hardware/software combination, when compared with two commercial systems; a 3D scanner and an industrially packaged sensor unit used for exterior gaps, which provided repeatability values of 24 and 17 percent, respectively, with accuracies of 1.5 and 0.34 mm.

Originality/value

New hardware and software are developed in combination to operate effectively on different deco finish and gap separations.

Details

Sensor Review, vol. 31 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 1996

Calvin C. Chen and Paul A. Sullivan

Accurate build‐time prediction for making stereolithography parts not only benefits the service industry with information necessary for correct pricing and effective job…

1168

Abstract

Accurate build‐time prediction for making stereolithography parts not only benefits the service industry with information necessary for correct pricing and effective job scheduling, it also provides researchers with valuable information for various build parameter studies. Instead of the conventional methods of predicting build time based on the part’s volume and surface, the present predictor uses the detailed scan and recoat information from the actual build files by incorporating the algorithms derived from a detailed study of the laser scan mechanism of the stereolithography machine. Finds that the scan velocity generated from the stereolithography machine depends primarily on the system’s laser power, beam diameter, materials properties and the user’s specification of cure depth. Proves that this velocity is independent of the direction the laser travels, and does not depend on the total number of segments of the scan path. In addition, the time required for the laser to jump from one spot to another without scan is linearly proportional to the total jump distance, and can be calculated by a proposed constant velocity. Most profoundly, the present investigation concludes that the machine uses a velocity factor which is only 68.5 per cent of the theoretical calculation. This much slower velocity results in an undesired amount of additional cure and proves to be the main cause of the Z dimensional inaccuracy. The present build‐time predictor was developed by taking into account all the factors stated above, and its accuracy was further verified by comparing the actual build‐time observed for many jobs over a six month period.

Details

Rapid Prototyping Journal, vol. 2 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 January 2015

Eberhard Abele, Hanns A. Stoffregen, Klaus Klimkeit, Holger Hoche and Matthias Oechsner

This paper aims to develop a set of process parameters tailored for lattice structures and test them against standard process (SP) parameters. Selective laser melting (SLM) is a…

1460

Abstract

Purpose

This paper aims to develop a set of process parameters tailored for lattice structures and test them against standard process (SP) parameters. Selective laser melting (SLM) is a commonly known and established additive manufacturing technique and is a key technology in generating intricately shaped lattice structures. However, SP parameters used in this technology have building time and accuracy disadvantages for structures with a low area-to-perimeter ratio, such as thin struts.

Design/methodology/approach

In this research work, body-centred cubic structure specimens are manufactured using adapted process parameters. Central to the adapted process parameters is the positioning of the laser beam, the scan strategy and the linear energy density. The specimens are analysed with X-ray micro-computed tomography for dimensional accuracy. The final assessment is a comparison between specimens manufactured using adapted process parameters and those using SP parameters.

Findings

Standard parameters for lattice structures lead to a significant shift from the nominal geometry. An extensive manufacturing and computation time due to several exposure patterns (e.g. pre-contours, post-contours) was observed. The tailored process parameters developed had good dimensional accuracy, reproducible results and improved manufacturing performance.

Research limitations/implications

The results are based on a distinctive geometry of the lattice structure and a specific material. Future research should be extended to other geometries and materials.

Practical implications

Optimisation of process parameters for the part geometry is a critical factor in improving dimensional accuracy and performance of SLM processes.

Originality/value

This study demonstrates how application-tailored process parameters can lead to superior performance and improved dimensional accuracy. The results can be transferred to other lattice structure designs and materials.

Details

Rapid Prototyping Journal, vol. 21 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 November 2011

Brent Roeger

The purpose of this paper is to demonstrate laser microvia drilling of polyimide thin films from multiple sources before metallic sputtering. This process flow reduces Flexible…

Abstract

Purpose

The purpose of this paper is to demonstrate laser microvia drilling of polyimide thin films from multiple sources before metallic sputtering. This process flow reduces Flexible Printed Circuit Board (FPCB) material, chemical and operational costs by 90 per cent in the construction of flexible circuits.

Design/methodology/approach

The UV laser percussion drilling of microvias in 25 μm thick polyimide films with low coefficients of thermal expansion (CTE) and elastic modulii was investigated. Results were obtained using Scanning Electron Microscopy and Surface Profilometry. Polyimide films tested included: Dupont™ Kapton® EN; Kolon® GP and LV; Apical® NPI; and Taimide™ TA‐T.

Findings

There was no direct relationship between the top and bottom diameters and ablation depth rates between the polyimide films tested using the same test conditions. There was a direct relationship with exit diameters and etch rates at different laser pulse frequency rates and fluence levels. Laser pulse rates at 30 kHz produced 20 per cent larger exit diameters than at 70 kHz, however at 70 kHz the first pulse etched 16.5 per cent more material. High fluence levels etched more material but with a lower etch efficiency rate. Other microvia quality concerns such as surface swelling, membrane residues on the bottom side and surface debris inside the microvias were observed. Nanoscale powder‐like surface debris was observed on all samples in all test conditions.

Originality/value

This is the first comparison of material specifications and costs for films from multiple polyimide manufactures and laser microvia drilling. The paper also is the first to demonstrate results using a JDSU™ Lightwave Q302® laser rail. The results provide the first insights into potential microvia membrane issues and debris characteristics.

Details

Circuit World, vol. 37 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 5 September 2023

Xinyu Zhang and Liling Ge

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body and quality evaluation. This paper aims to discuss the…

Abstract

Purpose

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body and quality evaluation. This paper aims to discuss the aforementioned idea.

Design/methodology/approach

First, the differential body is set on a rotation platform before measuring. Then one laser sensor called as “primary sensor”, is installed on the intern of the differential body. The spherical surface and four holes on the differential body are sampled by the primary sensor when the rotation platform rotates one revolution. Another sensor called as “secondary sensor”, is installed above to sample the external cylinder surface and the planar surface on the top of the differential body, and the external cylinder surface and the planar surface are high in manufacturing precision, which are used as datum surfaces to compute the errors caused by the motion of the rotation platform. Finally, the sampled points from the primary sensor are compensated to improve the measurement accuracy.

Findings

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body. Based on the characteristics of the measurement data, a gradient image-based method is proposed to distinguish different objects from laser measurement data. A case study is presented to validate the measurement principle and data processing approach.

Research limitations/implications

The study investigates the possibility of correction of sensor data by the measurement results of multiple sensors to improving measurement accuracy. The proposed technique enables the error analysis and compensation by the geometric correlation relationship of various features on the measurand.

Originality/value

The proposed error compensation principle by using multiple sensors proved to be useful for the design of new measurement device for special part inspection. The proposed approach to describe the measuring data by image also is proved to be useful to simplify the measurement data processing.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 1999

John Peoples and Larry B. Weinstein

Increased worldwide competition has driven industry to find ever faster and more accurate techniques for product inspection. Although developed only recently, noncontact laser

Abstract

Increased worldwide competition has driven industry to find ever faster and more accurate techniques for product inspection. Although developed only recently, noncontact laser gauging systems (NCLGSs) are quickly becoming an accepted technology for manufacturing, in particular for large volume producers of wire who require online diameter measurement. This paper describes the major components of an NCLGS and how its technology enables manufacturers to incorporate extremely accurate online product measurement. The paper also describes the benefits and issues for concern associated with use of this new technology.

Details

Sensor Review, vol. 19 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 January 2016

Maria Doubenskaia, Sergey Grigoriev, Ivan Zhirnov and Igor Smurov

This paper aims to propose methods for on-line monitoring and process quality assurance of Selective Laser Melting (SLM) technology as a competitive advantage to enhance its…

Abstract

Purpose

This paper aims to propose methods for on-line monitoring and process quality assurance of Selective Laser Melting (SLM) technology as a competitive advantage to enhance its implementation into modern manufacturing industry.

Design/methodology/approach

Monitoring of thermal emission from the laser impact zone was carried out by an originally developed pyrometer and a charge-coupled device (CCD) camera which were integrated with the optical system of the PHENIX PM-100 machine. Experiments are performed with variation of the basic process parameters such as powder layer thickness (0-120 μm), hatch distance (60-1,000 μm) and fabrication strategy (the so-called “one-zone” and “two-zone”).

Findings

The pyrometer signal from the laser impact zone and the 2D temperature mapping from HAZ are rather sensible to variation of high-temperature phenomena during powder consolidation imposed by variation of the operational parameters.

Research limitations/implications

Pyrometer measurements are in arbitrary units. This limitation is due to the difficulty to integrate diagnostic tools into the optical system of a commercial SLM machine.

Practical implications

Enhancement of SLM process stability and efficiency through comprehensive optical diagnostics and on-line control.

Originality/value

High-temperature phenomena in SLM were monitored coaxially with the laser beam for variation of several operational parameters.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 April 2018

Marco Anilli, Ali Gökhan Demir and Barbara Previtali

The purpose of this paper is to demonstrate the use of selective laser melting for producing single and double chamber laser cutting nozzles. The main aim is to assess a whole…

Abstract

Purpose

The purpose of this paper is to demonstrate the use of selective laser melting for producing single and double chamber laser cutting nozzles. The main aim is to assess a whole production chain composed of an additive manufacturing (AM) and consecutive finishing processes together. Beyond the metrological and flow-related characterization of the produced nozzles, functional analysis on the use of the produced nozzles are carried out through laser cutting experiments.

Design/methodology/approach

SLM experiments were carried out to determine the correct compensation factor to achieve a desired nozzle diameter on steel with known processibility by SLM and using standard nozzle geometries for comparative purposes. The produced nozzles are finished through electrochemical machining (ECM) and abrasive flow machining (AFM). The performance of nozzles produced via additive manufacturing (AM) are compared to conventional ones on an industrial laser cutting system through cutting experiments with a 6 kW fibre laser. The produced nozzles are characterized in terms of pressure drop and flow dynamics through Schlieren imaging.

Findings

The manufacturing chain was regulated to achieve 1 mm diameter nozzles after consecutive post processing. The average surface roughness could be lowered by approximately 80 per cent. The SLM produced single chamber nozzles would perform similarly to conventional nozzles during the laser cutting of 1 mm mild steel with nitrogen. The double chamber nozzles could provide complete cuts with oxygen on 5 mm-thick mild steel only after post-processing. Post-processing operations proved to decrease the pressure drop of the nozzles. Schlieren images showed jet constriction at the nozzle outlet on the as-built nozzles.

Originality/value

In this work, the use of an additive manufacturing process is assessed together with suitable finishing and functional analysis of the related application to provide a complete production and evaluation chain. The results show how the finishing processes should be allocated in an AM-based production chain in a broader vision. In particular, the results confirm the functionality for designing more complex nozzle geometries for laser cutting, exploiting the flexibility of SLM process.

Details

Rapid Prototyping Journal, vol. 24 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 2000