Search results

1 – 10 of 240
Article
Publication date: 29 October 2020

Zhun Li, Guang Pan and KeChun Shen

The objective of this paper is to investigate numerically the buckling behavior of submersible composite cylinders.

Abstract

Purpose

The objective of this paper is to investigate numerically the buckling behavior of submersible composite cylinders.

Design/methodology/approach

By means of FEM and golden section method, the search of hoop winding layers, longitudinal winding layers and helical winding layers are studied to optimize the buckling pressure. Considering the mid-strengthening cylinder, the size and distribution of stiffeners are studied systematically.

Findings

The results show that laying the hoop winding layers in the two outer sidewalls and the longitudinal winding layers in the middle of the shell is helpful to increase the buckling pressure, and the optimal helical winding angle changes with slenderness ratio.

Originality/value

For mid-strengthening cylinder, the effect of helical winding angle of stiffener on buckling pressure becomes weak gradually with the increase of stiffener thickness. With the increasing of the spacing between stiffeners, the buckling pressure increases first and decreases later. What is more, the mid-strengthening cylinder is less sensitive to the initial geometric imperfections than unstiffened shells.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6067

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 June 2023

Prashant Kumar Choudhary

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Abstract

Purpose

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Design/methodology/approach

A novel optimization method is developed to predict the optimal fiber orientation in composite cylindrical shell. The optimization is carried out by coupling analytical and finite element (FE) results with a genetic algorithm (GA)-based optimization scheme developed in MATLAB. Linear eigenvalue were performed to evaluate the buckling behaviour of composite cylinders. In analytical part, besides the buckling analysis, Tsai-Wu failure criteria are employed to analyse the failure of the composite structure.

Findings

The optimal result obtained through this study is compared with traditionally used laminates with 0, 90, ±45 orientation. The results suggest that the application of this novel optimization algorithm leads to an increase of 94% in buckling strength.

Originality/value

The proposed optimal fiber orientation can provide a practical and efficient way for the designers to evaluate the buckling pressure of the composite shells in the design stage.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 October 2018

Salvatore Brischetto

The main idea is the comparison between composites including natural fibres (such as the linoleum fibres) and typical composites including carbon fibres or glass fibres. The…

Abstract

Purpose

The main idea is the comparison between composites including natural fibres (such as the linoleum fibres) and typical composites including carbon fibres or glass fibres. The comparison is proposed for different structures (plates, cylinders, cylindrical and spherical shells), lamination sequences (cross-ply laminates and sandwiches with composite skins) and thickness ratios. The purpose of this paper is to understand if linoleum fibres could be useful for some specific aerospace applications.

Design/methodology/approach

A general exact three-dimensional shell model is used for the static analysis of the proposed structures to obtain displacements and stresses through the thickness. The shell model is based on a layer-wise approach and the differential equations of equilibrium are solved by means of the exponential matrix method.

Findings

In qualitative terms, composites including linoleum fibres have a mechanical behaviour similar to composites including glass or carbon fibres. In terms of stress and displacement values, composites including linoleum fibres can be used in aerospace applications with limited loads. They are comparable with composites including glass fibres. In general, they are not competitive with respect to composites including carbon fibres. Such conclusions have been verified for different structure geometries, lamination sequences and thickness ratios.

Originality/value

The proposed general exact 3D shell model allows the analysis of different geometries (plates and shells), materials and laminations in a unified manner using the differential equilibrium equations written in general orthogonal curvilinear coordinates. These equations written for spherical shells degenerate in those for cylinders, cylindrical shell panels and plates by means of opportune considerations about the radii of curvature. The proposed shell model allows an exhaustive comparison between different laminated and sandwich composite structures considering the typical zigzag form of displacements and the correct imposition of compatibility conditions for displacements and equilibrium conditions for transverse stresses.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 November 2019

Zhangxin Guo, Zhonggui Li, Junjie Cui, Yongcun Li and Yunbo Luan

The purpose of this paper is to present a finite element analysis (FEA) of filament-wound composites, as well as application of these materials.

Abstract

Purpose

The purpose of this paper is to present a finite element analysis (FEA) of filament-wound composites, as well as application of these materials.

Design/methodology/approach

In this paper, a new finite element method of filament-wound composite is presented. The stress and strain fields in the composite cylinders are analyzed using the ABAQUS software packages for considering the filament undulation and crossover. The paper presented results of buckling load of composite cylinders with different types of filament-winding patterns.

Findings

The result of the example shows that the stress distributions are uniform along the cylinder length and around the circumference when the analytical approach is based on the conventional FEA. The stress distributions are not uniform along the cylinder length and around the circumference for considering the filament undulation and crossover. The stress units are arranged in a regular geometric pattern around circumference and along the axis of rotation. The analysis of the effect of filament-winding mosaic patterns on the mechanical characteristics of composite cylindrical is presented in the paper.

Originality/value

The stress and strain fields in the composite cylinders were analyzed for considering the filament undulation and crossover. The buckling load of composite cylinders with different types of filament-winding patterns was presented in this paper.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 January 2020

Mohammad Amin Shahmohammadi, Mojtaba Azhari, Mohammad Mehdi Saadatpour and Saeid Sarrami-Foroushani

This paper aims to analyze the stability of laminated shells subjected to axial loads or external pressure with considering various geometries and boundary conditions. The main…

Abstract

Purpose

This paper aims to analyze the stability of laminated shells subjected to axial loads or external pressure with considering various geometries and boundary conditions. The main aim of the present study is developing an efficient combined method which uses the advantages of different methods, such as finite element method (FEM) and isogeometric analysis (IGA), to achieve multipurpose targets. Two types of material including laminated composite and sandwich functionally graded material are considered.

Design/methodology/approach

A novel type of finite strip method called isogeometric B3-spline finite strip method (IG-SFSM) is used to solve the eigenvalue buckling problem. IG-SFSM uses B3-spline basis functions to interpolate the buckling displacements and mapping operations in the longitudinal direction of the strips, whereas the Lagrangian functions are used in transverse direction. The current presented IG-SFSM is formulated based on the degenerated shell method.

Findings

The buckling behavior of laminated shells is discussed by solving several examples corresponding to shells with various geometries, boundary conditions and material properties. The effects of mechanical and geometrical properties on critical loads of shells are investigated using the related results obtained by IG-SFSM.

Originality/value

This paper shows that the proposed IG-SFSM leads to the critical loads with an approved accuracy comparing with the same examples extracted from the literature. Moreover, it leads to a high level of convergence rate and low cost of solving the stability problems in comparison to the FEM.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 August 2011

Haris Hameed Mian and Hammad Rahman

Filament wound pressure vessels have a characteristic pattern observed in their helical layers. These are mosaic‐shaped patterns and affect the layer structural behavior. The…

Abstract

Purpose

Filament wound pressure vessels have a characteristic pattern observed in their helical layers. These are mosaic‐shaped patterns and affect the layer structural behavior. The present research aims to focus on the influence of mosaic patterns on stress‐strain field and structural design of thin‐walled internally pressurized filament wound pressure vessel. The widely used stress analysis procedures and the commercially available finite element tools usually neglect the effect of the mosaic patterns. The present work seeks to deal with the modeling and stress analysis of complete pressure vessel, incorporating mosaic patterns.

Design/methodology/approach

The incorporation of the mosaic effect provides more realistic modeling of the real stress distribution and the stress values compared to the conventional analyses (the effect would depend on the shell structure, i.e. number of plies, relative thicknesses, etc.). The structural analysis is performed using commercial finite element analysis (FEA) tools ANSYS.

Findings

The comparison of results of analytical solution and conventional FEA provides close values of the stresses in the plies. As for the stress and strain distributions obtained by incorporating the effect of mosaic patterns are considerably different. The distribution of the stress and strain fields are not uniform along the length of the vessel and along its circumference and the maximum stresses acting in the direction of the fibers are higher than those calculated using conventional FEA techniques.

Originality/value

Previous work was limited to composite cylindrical shells, without incorporating the end domes. The present work deals with the modeling and stress analysis of complete pressure vessel, incorporating mosaic patterns.

Details

International Journal of Structural Integrity, vol. 2 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 March 1998

M. Walker, T. Reiss, S. Adali and P.M. Weaver

The optimal design of a laminated cylindrical shell is obtained with the objectives defined as the maximisation of the axial and torsional buckling loads. The ply angle is taken…

417

Abstract

The optimal design of a laminated cylindrical shell is obtained with the objectives defined as the maximisation of the axial and torsional buckling loads. The ply angle is taken as the design variable. The symbolic computational software package MATHEMATICA is used in the implementation and solution of the problem. This approach simplifies the computational procedure as well as the implementation of the analysis/optimisation routine. Results are given illustrating the dependence of the optimal fiber angle on the cylinder length and radius. It is shown that a general purpose computer algebra system like MATHEMATICA is well suited to solve small boundary value problems such as structural design optimisation involving composite materials.

Details

Engineering Computations, vol. 15 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1996

Ayech Benjeddou and Mohamed Ali Hamdi

Presents a new B‐spline finite element for the dynamic analysis of unsymmetrical sandwich shells of revolution. The formulation takes account of the membrane and bending effects…

Abstract

Presents a new B‐spline finite element for the dynamic analysis of unsymmetrical sandwich shells of revolution. The formulation takes account of the membrane and bending effects in isotropic or orthotropic elastic facings, and membrane, bending and transverse shearing effects in an isotropic or othotropic elastic core. Both geometry and local displacements are interpolated by a set of B‐spline functions. The main aspects added by the sandwich structure of the element are the transverse shearing and membrane‐bending coupling effects in the core. These are well represented by a set of new variables which are the mean end relative in‐plane displacements of the facing middle surfaces. Together with the transverse displacement, these variables constitute the degrees of freedom (dofs) of this new B‐spline sandwich element. The finite elements are grouped into super‐elements with C1 continuity to obtain the whole finite element model. For each super‐element a total of five dofs per node is then obtained except for its end nodes where the derivatives of these dofs with respect to the meridional co‐ordinate are added. This choice reduces to a minimum the total number of dofs in comparison to existing sandwich elements. Evaluates the efficiency and accuracy of the proposed element through several benchmark examples. Compares the results with the analytical and numerical solutions found in the literature. A very satisfactory behaviour of the element was observed in all test cases.

Details

Engineering Computations, vol. 13 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3546

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 240