Search results

1 – 10 of over 1000
Article
Publication date: 15 June 2012

Ugur Caligulu, Mustafa Taskin, Haluk Kejanli and Ayhan Orhan

The purpose of this paper is to investigate interface characterization of CO2 laser welded AISI 304 austenitic stainless steel and AISI 1010 low carbon steel couple. Laser welding

Abstract

Purpose

The purpose of this paper is to investigate interface characterization of CO2 laser welded AISI 304 austenitic stainless steel and AISI 1010 low carbon steel couple. Laser welding experiments were carried under argon and helium atmospheres at 2000, 2250 and 2500 W heat inputs and 200‐300 cm/min welding speeds.

Design/methodology/approach

The microstructures of the welded joints and the heat affected zones (HAZ) were examined by optical microscopy, SEM, EDS and X‐Ray analysis. The tensile strength of the welded joints was measured.

Findings

The result of this study indicated that the width of welding zone and HAZ became much thinner depending on the increased welding speed. On the other hand, this width widened depending on the increased heat input. Tensile strength values also confirmed this result. The best properties were observed at the specimens welded under helium atmosphere, at 2500 W heat input and at 200 cm/min welding speed.

Originality/value

There are many reports which deal with the shape and solidification structure of the fusion zone of laser beam welds in relation to different laser parameters. However, the effect of all influencing factors of laser welding has up to now not been extensively researched. Much work is required for understanding the combined effect of laser parameters on the shape and microstructure of the fusion zone. This paper, therefore, is concerned with laser power, welding speed, defocusing distance and type of shielding gas and their effects on the fusion zone shape and final solidification structure of some stainless steels.

Details

Industrial Lubrication and Tribology, vol. 64 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 1 December 2005

207

Abstract

Details

Assembly Automation, vol. 25 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 February 2008

P. Sathiya, S. Aravindan and A. Noorul Haq

Friction welding is a solid state bonding process, where the joint between two metals has been established without melting the metal. The relative motion between the faying…

Abstract

Friction welding is a solid state bonding process, where the joint between two metals has been established without melting the metal. The relative motion between the faying surfaces (surfaces to be joined) under the application of pressure promotes surface interaction, friction and heat generation which subsequently results in joint formation. Stainless steel is an iron based alloy, contains various combinations of other elements to give desired characteristics, and found a wider range of applications in the areas such as petro‐chemical, fertilizer, automotive, food processing, cryogenic, nuclear and beverage sectors. In order to exploit the complete advantages of stainless steels, suitable joining techniques are highly demanded. The Friction welding is an easily integrated welding method of stainless steel, which considered as non‐weldable through fusion welding. Grain coarsening, creep failure and failure at heat‐affected zone are the major limitations of fusion welding of similar stainless steels. Friction welding eliminates such pitfalls. In the present work an attempt is made to investigate experimentally, the mechanical and metallurgical properties of friction welded joints, namely, austenitic stainless steel (AISI 304) and ferritic stainless steel (AISI 430). Evaluation of the characteristics of welded similar stainless steel joints are carried out through tensile test, hardness measurement and metallurgical investigations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 August 2019

Sabah Khammass Hussein, Isam Tareq Abdullah and Abbas Khammas Hussein

The purpose of this paper is to join AA5052 to AISI 1006 steel sheets using the spot friction forming technique.

Abstract

Purpose

The purpose of this paper is to join AA5052 to AISI 1006 steel sheets using the spot friction forming technique.

Design/methodology/approach

A steel sheet was pre-holed with a diameter of 4.8 mm and pre-threaded with a single internal M6 thread. Lap joint configuration was used so that the aluminium specimen was put over steel. A rotating tool with a 10 mm diameter was used for the joining process. A Taguchi method was used to design three process parameters (plunging tool depth, rotating speed and preheating time), with three levels for each parameter. The effect of the process parameters on the joint shear strength was analysed. The macrostructure, microstructure and scanning electron microscope of the joint were investigated. The temperature distribution during the joining process was recorded.

Findings

The formed aluminium was extruded through the steel hole and penetrated through the thread slot. A mechanical interlock was achieved between the extruded aluminium and the steel. The plunging depth of the tool exhibited a significant effect on the joint shear strength. The joint efficiency increased gradually as the plunging depth increased. Two modes of failure were found shear and pull-out. The maximum temperature during the process reached 50 per cent of aluminium’s melting point.

Originality/value

For the first time, AA5052 was joined with AISI 1006 steel using a friction spot forming technique with an excellent joint efficiency.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 October 2018

Thiemo Valentin Fieger, Maximilian Ferdinand Sattler and Gerd Witt

This paper aims to identify issues with joining selective laser melting (SLM) steels with conventional cold rolled steels through remote laser beam welding.

Abstract

Purpose

This paper aims to identify issues with joining selective laser melting (SLM) steels with conventional cold rolled steels through remote laser beam welding.

Design/methodology/approach

A novel approach for substituting conventional cold rolled metal sheets with SLM metal sheets, made of 316L and 18-Ni 300, is presented. The characteristics of the interaction of wrought and SLM materials are described, and joining benchmark parameters are presented and compared to known existing joining results. Finally, the joints are assessed in line with automotive specifications. This research also addresses the importance of joining technologies for the implementation of SLM as a full-fledged manufacturing technology for the automotive industry.

Findings

New parameter ranges for laser beam welding of SLM steels are defined.

Research limitations/implications

This research is limited to the examined steels and the used machines, parameters and equipment.

Practical implications

The presented benchmark parameters are expected to be useful for designers, product developers and machine operators.

Originality/value

Little knowledge is available about the behavior of SLM materials and their suitability for assembly processes. Novel information about SLM steels and their interaction with conventionally produced steel sheets is presented.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2018

Nada Ratković, Vukic Lazić, Dušan Arsić, Ružica R. Nikolić, Radica Prokić Cvetković and Olivera Popović

The purpose of this paper is to point out the possibilities for friction welding of dissimilar steels which are used in various industries. In addition, friction welding is a…

Abstract

Purpose

The purpose of this paper is to point out the possibilities for friction welding of dissimilar steels which are used in various industries. In addition, friction welding is a welding method that is applied for executing the very responsible joints. This research is focused on friction and tribological processes in the friction plane of the two pieces during the welding.

Design/methodology/approach

The present study research has been conducted based on the experimental testing of cylindrical specimens and results are analyzed.

Findings

The austenite grain size is affected by several factors through the friction process phase and the compacting phase during the welding. The very fine grain is the consequence of the high degree of the plastic deformation of the near-the-contact layers even in the friction phase. The viscous layer, which is formed during the stable friction phase, is the area where the moving of matter occurs according to a very complex mechanism.

Originality/value

The paper contains useful results from the area of conventional friction welding of dissimilar steels and it can be very useful to researchers and engineers who deal with similar problems.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 1968

R. Graham

IT is generally agreed there would be a significant saving in weight and consequent improvement in efficiency, if aircraft could be assembled by welding, instead of by the use of…

Abstract

IT is generally agreed there would be a significant saving in weight and consequent improvement in efficiency, if aircraft could be assembled by welding, instead of by the use of mechanical fasteners. The size of the savings is indicated and the reasons for the currently limited use of welded assemblies are listed. A short list has been chosen of those conventional and more recently developed welding procedures which might be considered suitable for assembling aircraft in future. The compatibility of these procedures and specific alloys is discussed. The relation between the welding procedures and the various components of the airframe is reviewed and some of the developments which might be possible through the use of welded construction are mentioned. There is a short discussion, also, on the joining of the composite materials which may be important in future airframe structures.

Details

Aircraft Engineering and Aerospace Technology, vol. 40 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 June 2013

Mieczysław Kaczorowski and Radosław Winiczenko

The results of a study of friction welding of ductile cast iron using stainless steel interlayer are presented. Based on the microstructure evolution at the region close to the…

Abstract

Purpose

The results of a study of friction welding of ductile cast iron using stainless steel interlayer are presented. Based on the microstructure evolution at the region close to the ductile cast iron‐stainless steel interface, the phenomena accompanying the process of joining were evaluated. Therefore, the purpose of this paper is to take a closer look into metallurgical phenomena accompanying the friction welding of ductile cast iron.

Design/methodology/approach

In this paper, ductile cast iron and austenitic‐stainless steel are welded using the friction welding method. The tensile strength of the joints was determined using a conventional tensile test machine. Moreover, the hardness across the interface ductile cast iron‐stainless steel interface was measured on a metallographic specimen. The microstructure of the joints was examined using light metallography as well as electron microscopy. In this case, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied. Energy Dispersive X‐ray analysis (EDS) was carried out across the section of friction welded ductile iron‐stainless steel interface.

Findings

On the basis of careful analysis of experimental data it was concluded that the process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the ductile cast iron‐stainless steel interface. This leads to an increase of carbon concentration in stainless steel where chromium carbides were formed, the size and distribution of which was dependent on the distance from the interface.

Originality/value

The main value of this paper is to contribute to the literature on friction welding of ductile cast iron.

Details

Industrial Lubrication and Tribology, vol. 65 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 December 2019

Isam Tareq Abdullah, Sabah Khammass Hussein and Abbas Khammas Hussein

The purpose of this paper is to join sheets of an aluminium alloy together with pre-holed carbon steel via friction spot technique.

Abstract

Purpose

The purpose of this paper is to join sheets of an aluminium alloy together with pre-holed carbon steel via friction spot technique.

Design/methodology/approach

An AISI 1006 steel sheet was a pre-holed with a 4.8 mm diameter and put under AA5052 sheet with a lap joint configuration. The joining process was carried out by extruding the aluminium through the steel hole using a rotating tool of 10 mm diameter. Furthermore, three process parameters (pre-heating time, rotating speed and plunging depth of the tool) with three values for each parameter were used to study their effects on the joints quality. In order to join samples, nine experiments were designed according to a Taguchi method. Shear strength, microstructure and X-ray diffraction tests of the joint were carried out.

Findings

The joining mechanism occurred by a mechanical interlock of the extruded aluminium with the inner surface of the steel hole. The tool plunging depth had a significant effect on the shear strength of the joint. The shear strength of two joints exceeded the shear strength of the wrought material (AA5052). All samples failed with two modes: pull-out and shearing of the extruded aluminium.

Originality/value

For the first time, the extrusion technique was used to join AA5052 sheet together with pre-holed carbon steel, with a perfect joint efficiency.

Details

International Journal of Structural Integrity, vol. 11 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 1000