Search results

1 – 10 of 452
To view the access options for this content please click here
Article

Yueling Lyu, Yangzhi Chen and Yulin Wan

Selective laser melting (SLM) is an important advanced additive manufacturing technology. The existing SLM printing technology cannot manufacture the mechanical parts that…

Abstract

Purpose

Selective laser melting (SLM) is an important advanced additive manufacturing technology. The existing SLM printing technology cannot manufacture the mechanical parts that fully meet the requirements of high precision and strength. This paper aims to explore a new post-processing method for SLM 316L specimen, namely, using of the TiN/TiAlN multilayer coating fabricated by multi-arc ion plating on the surface of SLM specimens, for improving the performance of SLM specimens. The other purpose of this paper is compared the performances of the TiAlN/TiN multilayer coating machined specimen and the TiN/TiAlN multilayer coating SLM specimen.

Design/methodology/approach

The TiN/TiAlN multilayer coating is fabricated by multi-arc ion plating on the surface of 316L specimens. The surface morphology and selected mechanical properties of TiN/TiAlN multilayer coating plating on the SLM substrate specimen and the machined substrate specimen were studied in this paper. The analyzed properties included surface topography, micro hardness, the adhesion, the thickness and the wear resistance of TiN/TiAlN multilayer coating plating on the SLM substrate specimen and the machined substrate specimen.

Findings

The electron microscope images reveal that surface morphology of TiN/TiAlN multilayer coating plating on the SLM specimens is relatively flat, and there are some micro-particles in different sizes and pin holes dispersed on them. After TiN/TiAlN multilayer coating, the performances of SLM samples, such as micro hardness, the thickness and the wear resistance, were significantly improved. The micro hardness of TiN/TiAlN multilayer coating machined specimen is higher than that of TiN/TiAlN multilayer coating SLM specimen. However, the adhesion of TiN/TiAlN multilayer coating machined specimen is less than that of TiN/TiAlN multilayer coating SLM specimen.

Originality/value

The study provides a new post-processing method for SLM 316L specimen to improve the performance of SLM specimens and to enable SLM specimens to be applied in the field of precision mechanical transmission.

Details

Rapid Prototyping Journal, vol. 26 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Won-Hyuk Lee, Tae-Wook Na, Kyung-Woo Yi, Seung-Min Yang, Jang-Won Kang, Hyung Giun Kim and Hyung-Ki Park

When a pure titanium component is fabricated in a selective laser melting (SLM) process using titanium powder, the oxygen concentration of the SLM sample increases…

Abstract

Purpose

When a pure titanium component is fabricated in a selective laser melting (SLM) process using titanium powder, the oxygen concentration of the SLM sample increases compared to the initial powder. The purpose of this paper is to study the reason for increasing oxygen concentration after SLM.

Design/methodology/approach

To understand this phenomenon, the authors analyzed the oxidation behavior during the SLM process thermodynamically.

Findings

Based on the laser parameters used in this study, the temperature of the Ti melt during the SLM process was expected to rise to 2,150°C. Based on the thermodynamic analysis, the equilibrium oxygen partial pressure for oxidation was 2.32 × 10−19 atm at 2,150°C when the dissolved oxygen concentration in the titanium is 0.2 wt.%. However, the oxygen partial pressure inside the SLM chamber was 1 × 10−3 atm, which is much higher than the equilibrium oxygen partial pressure. Therefore, oxidation occurred during the SLM process, and the oxygen concentration of the SLM sample increased compared to the initial powder.

Originality/value

Most studies on fabricating Ti components using additive manufacturing (AM) have been focused on how the changes in the microstructures and mechanical properties depend on the process parameters. However, there are a few studies that analyzed the oxygen concentration change of Ti during the AM process and its causes. In this study, the authors analyzed the oxidation behavior during the SLM process thermodynamically.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Xizhang Chen, Kun Liu, Wei Guo, Namrata Gangil, Arshad Noor Siddiquee and Sergey Konovalov

In recent years, the use of high performing materials, and application of additive manufacturing technology for industrial production has witnessed a steady rise and its…

Abstract

Purpose

In recent years, the use of high performing materials, and application of additive manufacturing technology for industrial production has witnessed a steady rise and its expanse is only to increase in the future. “Selective laser melting (SLM) technique” for an exotic nickel-titanium (NiTi) shape memory alloy (SMA) is expected to a great facilitator to research in this area. The purpose of this paper is to put forth the research direction of NiTi shape memory alloy by selective laser melting.

Design/methodology/approach

This review also summaries and skims out the information on process equipment, adopted methodologies/strategies, effects of process parameters on important responses e.g. microstructure and comprehensive functional and mechanical properties of SLM-NiTi. In particular, the functional characteristics (i.e. shape memory effects and super-elasticity behavior), process analysis and application status are discussed.

Findings

Current progresses and challenges in fabricating NiTi-SMA of SLM technology are presented.

Practical implications

This review is a useful tool for professional and researchers with an interest in the field of SLM of NiTi-SMA.

Originality/value

This review provides a comprehensive review of the publications related to the SLM techniques of NiTi-SMA while highlighting current challenges and methods of solving them.

Details

Rapid Prototyping Journal, vol. 25 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Chor Yen Yap, Hongyi Kenneth Tan, Zhenglin Du, Chee Kai Chua and Zhili Dong

Selective laser melting (SLM) is an additive manufacturing technology that is gaining industrial and research interest as it can directly fabricate near full density…

Abstract

Purpose

Selective laser melting (SLM) is an additive manufacturing technology that is gaining industrial and research interest as it can directly fabricate near full density metallic components. The paper aims to identify suitable process parameters for SLM of processing of pure nickel powder and to study the microstructure of such products. The study also aims to characterize the microhardness and tensile properties of pure nickel produced by SLM.

Design/methodology/approach

A 24 factorial design experiment was carried out to identify the most significant factors on the resultant porosity of nickel parts. A subsequent experiment was carried out with a laser power of 350 W. The scanning speeds and hatch spacings were varied.

Findings

Scanning speed and hatch spacing have significant effects on the porosity of SLM components. A high relative density of 98.9 per cent was achieved, and microhardness of 140 to 160 Hv was obtained from these samples. A tensile strength 452 MPa was obtained.

Research limitations/implications

As the energy input levels were made in steps of 20 J/mm3 for the optimization study, the true optimal combination of parameters may have been missed. Therefore, researchers are encouraged to test the parameters with smaller variations in energy levels.

Practical implications

The paper provides a set of optimized parameters for the SLM of pure nickel. This study enables the three-dimensional (3D) printing of objects with nickel, which has applications in chemical catalyses and in microelectromechanical systems with its magnetostrictive properties.

Originality value

This research is the first in direct processing of pure nickel using SLM, with the identification of suitable process parameters. The study also provides an understanding of the porosity, microhardness, strength and microstructure of SLM produced nickel parts. This work paves the way for standardization of 3D printed nickel components and enables the applications of pure nickel via SLM.

Details

Rapid Prototyping Journal, vol. 23 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Zefeng Xiao, Yongqiang Yang, Di Wang, Changhui Song and Yuchao Bai

This paper aims to summarize design rules based on the process characteristics of selective laser melting (SLM) and structural optimization and apply the design rules in…

Abstract

Purpose

This paper aims to summarize design rules based on the process characteristics of selective laser melting (SLM) and structural optimization and apply the design rules in the lightweight design of an aluminum alloy antenna bracket. The design goal is to reduce 30 per cent of the weight while maintaining the stress levels in the original part.

Design/methodology/approach

To reduce weight as much as possible, the titanium alloy with higher specific strength was selected during the process of optimization. The material distribution of the bracket was improved by the topology optimization design. The redesign for SLM was used to obtain an optimization model, which was more suitable for SLM. The component performance was improved by shape optimization. The modal analysis data of the structural optimization model were compared with those of the stochastic lightweight model to verify the structural optimization model. The scanning data were compared with those of the original model to verify whether the model was suitable for SLM.

Findings

Structural optimization design for antenna bracket realized the mass decrease of 30.43 per cent and the fundamental frequency increase of 50.18 per cent. The modal analysis data of the stochastic lightweight model and the structural optimization model indicated that the optimization performance of structural optimization method was better than that of the stochastic lightweight method. The comparison results between the scanning data of the forming part and the original data confirmed that the structural optimization design for SLM lightweight component could achieve the desired forming accuracy.

Originality/value

This paper summarizes geometric constraints in SLM and derives design rules of structural optimization based on the process characteristics of SLM. SLM design rules make structural optimization design more reasonable. The combination of structural optimization design and SLM can improve the performance of lightweight antenna bracket significantly.

Details

Rapid Prototyping Journal, vol. 24 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Di Wang, Changhui Song, Yongqiang Yang, Ruicheng Liu, Ziheng Ye, Dongming Xiao and Yang Liu

This paper aims to verify that additive manufacturing technology could be used for the redesign and rapid manufacturing of tools and determine whether the mechanical…

Abstract

Purpose

This paper aims to verify that additive manufacturing technology could be used for the redesign and rapid manufacturing of tools and determine whether the mechanical performance of such tools can satisfy the practical operating requirements.

Design/methodology/approach

A special key was selected as the research object in this paper. The special key was innovatively redesigned and manufactured directly using selective laser melting (SLM). The function and critical geometries of the special key were first analysed, which was followed by discussions on the geometrical constraints in the manufacturing of typical geometrical features using SLM technology. Next, the special key was redesigned based on the SLM geometrical constraints and the functional requirements. Finally, the key was manufactured using SLM, and the mechanical performance characteristics of the key were determined.

Findings

The minimal geometrical feature was 0.2 mm when manufacturing thin walls using SLM. The reliable building angle of an overhanging surface was 40°. The top surface quality of the part could be greatly improved through laser surface re-melting. The volume of the redesigned special key based on the SLM process was only one-third to one-fourth of the original key. The mechanical properties, such as tensile strength and micro-hardness, of the samples manufactured using SLM were able to reach the practical operating requirements.

Originality/value

It is completely feasible to redesign and manufacture precision tools based on the innovative approach of SLM. The advantages of the redesigned tools includes the lack of design restrictions that hinder traditional manufacturing methods, material savings, ability to produce tools that cannot be easily copied and rapid production speed for a small number of tools.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Evren Yasa, Jan Deckers and Jean‐Pierre Kruth

Selective laser melting (SLM) is a powder metallurgical (PM) additive manufacturing process whereby a three‐dimensional part is built in a layer‐wise manner. During the…

Abstract

Purpose

Selective laser melting (SLM) is a powder metallurgical (PM) additive manufacturing process whereby a three‐dimensional part is built in a layer‐wise manner. During the process, a high intensity laser beam selectively scans a powder bed according to the computer‐aided design data of the part to be produced and the powder metal particles are completely molten. The process is capable of producing near full density (∼98‐99 per cent relative density) and functional metallic parts with a high geometrical freedom. However, insufficient surface quality of produced parts is one of the important limitations of the process. The purpose of this study is to apply laser re‐melting using a continuous wave laser during SLM production of 316L stainless steel and Ti6Al4V parts to overcome this limitation.

Design/methodology/approach

After each layer is fully molten, the same slice data are used to re‐expose the layer for laser re‐melting. In this manner, laser re‐melting does not only improve the surface quality on the top surfaces, but also has the potential to change the microstructure and to improve the obtained density. The influence of laser re‐melting on the surface quality, density and microstructure is studied varying the operating parameters for re‐melting such as scan speed, laser power and scan spacing.

Findings

It is concluded that laser re‐melting is a promising method to enhance the density and surface quality of SLM parts at a cost of longer production times. Laser re‐melting improves the density to almost 100 per cent whereas 90 per cent enhancement is achieved in the surface quality of SLM parts after laser re‐melting. The microhardness is improved in the laser re‐molten zone if sufficiently high‐energy densities are provided, probably due to a fine‐cell size encountered in the microstructure.

Originality/value

There has been extensive research in the field of laser surface modification techniques, e.g. laser polishing, laser hardening and laser surface melting, applied to bulk materials produced by conventional manufacturing processes. However, those studies only relate to laser enhancement of surface or sub‐surface properties of parts produced using bulk material. They do not aim at enhancement of core material properties, nor surface enhancement of (rough) surfaces produced in a PM way by SLM. This study is carried out to cover the gap and analyze the advantages of laser re‐melting in the field of additive manufacturing.

Details

Rapid Prototyping Journal, vol. 17 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Thiemo Valentin Fieger, Maximilian Ferdinand Sattler and Gerd Witt

This paper aims to identify issues with joining selective laser melting (SLM) steels with conventional cold rolled steels through remote laser beam welding.

Abstract

Purpose

This paper aims to identify issues with joining selective laser melting (SLM) steels with conventional cold rolled steels through remote laser beam welding.

Design/methodology/approach

A novel approach for substituting conventional cold rolled metal sheets with SLM metal sheets, made of 316L and 18-Ni 300, is presented. The characteristics of the interaction of wrought and SLM materials are described, and joining benchmark parameters are presented and compared to known existing joining results. Finally, the joints are assessed in line with automotive specifications. This research also addresses the importance of joining technologies for the implementation of SLM as a full-fledged manufacturing technology for the automotive industry.

Findings

New parameter ranges for laser beam welding of SLM steels are defined.

Research limitations/implications

This research is limited to the examined steels and the used machines, parameters and equipment.

Practical implications

The presented benchmark parameters are expected to be useful for designers, product developers and machine operators.

Originality/value

Little knowledge is available about the behavior of SLM materials and their suitability for assembly processes. Novel information about SLM steels and their interaction with conventionally produced steel sheets is presented.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Dylan Agius, Kyriakos I. Kourousis and Chris Wallbrink

The purpose of this paper is to examine the mechanical behaviour of additively manufactured Ti-6Al-4V under cyclic loading. Using as-built selective laser melting (SLM

Abstract

Purpose

The purpose of this paper is to examine the mechanical behaviour of additively manufactured Ti-6Al-4V under cyclic loading. Using as-built selective laser melting (SLM) Ti-6Al-4V in engineering applications requires a detailed understanding of its elastoplastic behaviour. This preliminary study intends to create a better understanding on the cyclic plasticity phenomena exhibited by this material under symmetric and asymmetric strain-controlled cyclic loading.

Design/methodology/approach

This paper investigates experimentally the cyclic elastoplastic behaviour of as-built SLM Ti-6Al-4V under symmetric and asymmetric strain-controlled loading histories and compares it to that of wrought Ti-6Al-4V. Moreover, a plasticity model has been customised to simulate effectively the mechanical behaviour of the as-built SLM Ti-6Al-4V. This model is formulated to account for the SLM Ti-6Al-4V-specific characteristics, under the strain-controlled experiments.

Findings

The elastoplastic behaviour of the as-built SLM Ti-6Al-4V has been compared to that of the wrought material, enabling characterisation of the cyclic transient phenomena under symmetric and asymmetric strain-controlled loadings. The test results have identified a difference in the strain-controlled cyclic phenomena in the as-build SLM Ti-6Al-4V when compared to its wrought counterpart, because of a difference in their microstructure. The plasticity model offers accurate simulation of the observed experimental behaviour in the SLM material.

Research limitations/implications

Further investigation through a more extensive test campaign involving a wider set of strain-controlled loading cases, including multiaxial (biaxial) histories, is required for a more complete characterisation of the material performance.

Originality/value

The present investigation offers an advancement in the knowledge of cyclic transient effects exhibited by a typical α’ martensite SLM Ti-6Al-4V under symmetric and asymmetric strain-controlled tests. The research data and findings reported are among the very few reported so far in the literature.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Edyta Lyczkowska-Widlak, Pawel Lochynski, Ginter Nawrat and Edward Chlebus

This paper aims to present the way of modifying surfaces of 316L stainless steel elements that were manufactured in the selected laser melting (SLM) technology and then…

Abstract

Purpose

This paper aims to present the way of modifying surfaces of 316L stainless steel elements that were manufactured in the selected laser melting (SLM) technology and then subjected to mechanical and electrolytic processing (electropolishing [EP]). The surface of the as-generated and commercial produced parts was modified by grinding and EP, and the results were compared. The authors also present an example of the application of EP for the final processing of a sample technological model – an initial prototype of a 316L steel implant manufactured in the SLM technology.

Design/methodology/approach

The analyzed properties included surface topography, roughness, resistance to corrosion, microhardness and the chemical composition of the surface before and after EP. The roughness described with the Ra, Rt and Rz was determined before and after EP of samples manufactured from 316L steel with use of traditional methods and additive technologies.

Findings

EP provides us with the opportunity to process elements with a complex structure, which would not be possible with use of other methods (such as milling or grinding). Depending on the expected final surface of elements after the SLM process, it is possible to reduce the surface roughness with the use of EP (for t = 20 min, Ra = 3.53 ± 0.37 µm and for t = 40 min, Ra = 3.23 ± 0.22 µm) or mechanical processing and EP (for t = 4 min, Ra = 0.13 ± 0.02 µm). The application of the EP method to elements made from 316L steel, in a bath consisting of sulfuric acid (VI), H2SO4 (35 Vol.%), phosphoric acid (V), H3PO4 (60.5 Vol.%) and triethanolamine 99 per cent (4.5 Vol.%), allows us to improve the surface smoothness and to obtain a value of the Ra parameter ranging from 0.11 to 0.15 µm. The application of a current density of 20 A/dm2 and a bath temperature of 55ºC results in an adequate smoothing of the surface (Ra < 0.16 µm) for both cold rolled and SLM elements after grinding. The application of EP, to both cold rolled elements and those after SLM, considerably improves the resistance to corrosion. The results of potentiodynamic corrosion resistance tests (jkor, EKA and Vp) of the 316L stainless steel samples demonstrate that the values of Vp for elements subjected to EP (commercial material: 1.3·10-4 mm/year, SLM material: 3.5·10-4 mm/year) are lower than for samples that were only ground (commercial material: 4.0·10-4 mm/year, SLM material: 9.6·10-4 mm/year). The microhardness was found to be significantly higher in elements manufactured using SLM technology than in those cold rolled and ground. The ground 316L steel samples were characterized by a microhardness of 318 HV (cold rolled) and 411 HV (SLM material), whereas the microhardness of samples subjected to EP was 230 HV (commercial material) and 375 HV (SLM material).

Originality/value

The 316L samples were built by SLM method. The surface of the SLM samples was modified by EP. Surface morphological changes after EP were studied using optical methods. Potentiodynamic tests enabled to notice changes in the corrosion resistance of 316L. Microhardness results after electropolished 316L stainless steel were shown. The chemical composition of 316L surface samples was presented. The smoothening of the surface amounted to Ra = 0.16 µm.

Details

Rapid Prototyping Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 452