Search results

1 – 10 of over 2000
Open Access
Article
Publication date: 21 June 2023

Pu Wang, Shuguo Wang, Jing Ge, Daolin Si and Dongsheng Yang

It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process. The wear will cause the change of railhead…

Abstract

Purpose

It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process. The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail, which will directly affect the wheel–rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation. The purpose of this paper is to provide suggestions for wear management of high-speed turnout.

Design/methodology/approach

The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site; the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.

Findings

The results show that: the major factor for the service life of a curved switch rail is the lateral wear. The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout. To be specific, the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout, but in the wider section at its rear end when for a facing turnout. The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm, which does not reach the specified limit of 6 mm. For comparison, the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm, which exceeds the specified limit. Based on this, in addition to meeting the requirements of maintenance rules, the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.6° will not contact the switch rail when the wheel is lifted by 2 mm. Accordingly, the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm (as specified) to 3.5 mm.

Originality/value

The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 18 June 2021

Supakorn Tultrairatana and Phenphop Phansuea

The purpose of this article was to investigate the relationship between symptoms related to air pollution, mask-wearing, mask choices and related factors.

1657

Abstract

Purpose

The purpose of this article was to investigate the relationship between symptoms related to air pollution, mask-wearing, mask choices and related factors.

Design/methodology/approach

A cross-sectional study among outpatient department (OPD) pollution clinic patients at Nopparat Rajathanee Hospital (PCNRH) during 2019 in Bangkok, Thailand.

Findings

The most common symptom after exposure to air pollution that affects treatment in the OPD is respiratory symptoms. A total of 45.7% (107/234) of the population wears a mask, 55.1% (59/107) of the population that wears a mask wears a surgical mask, and only 10.3% (11/107) of them wear an N95 mask. Mask-wearing and air quality index (AQI) onset were associated with the respiratory symptoms group, whereas wearing an N95 mask or surgical mask was found to be a protective factor for the occurrence of respiratory symptoms (adjusted OR = 0.065, 95% CI: 0.014–0.306, p = 0.001 and adjusted OR = 0.154, 95% CI: 0.058–0.404, p < 0.001, respectively). Therefore, the best practice in the face of air pollution, while the resolution needs a long period, is to wear a mask. In this study, the results showed that the best type of mask to prevent respiratory symptoms from air pollution is the N95, followed by the surgical mask; cloth masks are not recommended to use to protect against respiratory symptoms from air pollution.

Research limitations/implications

Wearing an N95 and a surgical mask can help reduce respiratory symptoms. Hence, in addition to establishing hospital measures, cooperation from local and government agencies is necessary to effectively and jointly build a national health public policy framework.

Originality/value

1. This study provides evidence of a correlation between symptoms associated with air pollution and related factors, in-hospital visits in Bangkok, Thailand. 2. In this study, wearing an N95 mask and a surgical mask were found to be a protective factor for the occurrence of respiratory symptoms.

Details

Journal of Health Research, vol. 36 no. 6
Type: Research Article
ISSN: 0857-4421

Keywords

Open Access
Article
Publication date: 2 August 2019

Yazhou Mao, Yang Jianxi, Xu Wenjing and Liu Yonggang

The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors…

1023

Abstract

Purpose

The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors of journal bearing with different arrangement patterns under lubrication condition were studied based on M-2000 friction and wear tester.

Design/methodology/approach

The friction and wear of journal bearing contact surface were simulated by ANSYS. The wear mechanism of bearing contact surfaces was investigated by the means of energy dispersive spectrum analysis on the surface morphology and friction and wear status of the journal bearing specimens by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). Besides, the wearing capacity of the textured bearing was predicted by using the GM (1,1) and Grey–Markov model.

Findings

As the loads increase, the friction coefficient of journal bearing specimens decrease first and then increase slowly. The higher rotation speed, the lower friction coefficient and the faster temperature build-up. The main friction method of the bearing sample is three-body friction. The existence of texture can effectively reduce friction and wear. In many arrangement patterns, the best is 4# bearing with round pits cross-arrangement pattern. Its texturing diameters are 60 µm and 125 µm, and the spacing and depth are 200 µm and 25 µm, respectively. In addition, the Grey–Markov model prediction result is more accurate and fit the experimental value better.

Originality/value

The friction and wear mechanism is helpful for scientific research and engineers to understand the tribological behaviors and engineering applications of textured bearing. The wear capacity of textured bearing is predicted by using the Grey–Markov model, which provides technical help and theoretical guidance for the service life and reliability of textured bearing.

Open Access
Article
Publication date: 19 May 2022

Maorui Hou, Fengshou Liu and Xiaoyi Hu

In order to systematically grasp the changes and matching characteristics of wheel and rail profiles of high speed railway (HSR) in China, 172 rail profile measurement points and…

Abstract

Purpose

In order to systematically grasp the changes and matching characteristics of wheel and rail profiles of high speed railway (HSR) in China, 172 rail profile measurement points and 384 wheels of 6 high-speed electric motive unites (EMUs) were selected on 6 typical HSR lines, including Beijing–Shanghai, Wuhan–Guangzhou, Harbin–Dalian, Lanzhou–Xinjiang, Guiyang–Guangzhou and Dandong–Dalian for a two-year field test.

Design/methodology/approach

Based on the measured data, the characteristics of rail and wheel wear were analyzed by mathematical statistics method. The equivalent conicity of wheel and rail matching in a wheel reprofiling cycle was analyzed by using the measured rail profile.

Findings

Results showed that when the curve radius of HSR was larger than 2,495 m, the wear rate of straight line and curve rail was almost the same. For the line with annual traffic gross weight less than 11 Mt, the vertical wear of rail was less than 0.01 mm. The wear rate of the rail with the curve radius less than 800 m increased obviously. The wheel tread wear of EMUs on Harbin–Dalian line, Lanzhou–Xinjiang line and Dandong–Dalian line was relatively large, and the average wear rate of tread was about 0.05–0.06 mm·(10,000 km)−1, while that of Beijing–Shanghai line, Wuhan–Guangzhou line and Guiyang–Guangzhou line was about 0.03–0.035 mm·(10,000 km)−1. When the wear range was small, the equivalent conicity increased with the increase of wheel tread wear. When the wear range of wheel was wide, the wheel–rail contact points were evenly distributed, and the equivalent conicity did not increase obviously.

Originality/value

This research proposes the distribution range of the equivalent conicity in one reprofiling cycle of various EMU trains, which provides guidance for the condition-based wheel reprofiling.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 29 April 2021

Anthony Kong, Jae-Eun Oh and Terry Lam

The novel coronavirus (COVID-19) has completely changed the landscape of the hospitality industry. The World Health Organization does not officially recommend wearing face masks…

3871

Abstract

Purpose

The novel coronavirus (COVID-19) has completely changed the landscape of the hospitality industry. The World Health Organization does not officially recommend wearing face masks in the workplace. Wearing face masks is controversial worldwide, however it has been widely adopted in Hong Kong society. Hospitality practitioners have worn face masks to work and serve customers for almost a year long, matching the duration of the COVID-19 pandemic. This paper proposes a conceptual model of face mask effects and also discusses and evaluates the effects of wearing face masks during the pandemic.

Design/methodology/approach

A convenience sampling method is employed to investigate hospitality operators using in-depth and focus group interviews with managers, front-line staff and customers.

Findings

The perspectives of both hospitality practitioners and customers are included in this study. The concepts of (1) invisible care, (2) sense of safety and (3) service trust have been introduced in this study. These provide valuable insights for the service industry when facing a large-scale health crisis, now and in the future.

Research limitations/implications

This paper analyzes interview data collected from 35 respondents – 14 managers, 6 practitioners and 15 customers – in order to understand the critical effects of wearing face masks during the pandemic and the perspectives of both hospitality practitioners and customers.

Practical implications

For the hospitality industry, wearing face mask in service has already become a “new normal”, face mask effects might create an impact on service design, service delivery and service quality.

Originality/value

The findings show that wearing face masks turns hygiene and safety into a form of invisible care in the Asian hospitality industry. Practitioners' perspective regarding the necessity of a smile is less important to Asian customers, showing a discrepancy between the two parties. Customers do not believe that service quality has dropped due to the wearing of masks, but that the level of hygiene has risen. Unlike customers, practitioners are more concerned about not providing good quality service. However, the interview data show that respondents generally agree that mask wearing is a gesture and symbol for the hospitality industry to make tangible a new form of caring, professionalism, safety concern and communication.

Details

International Hospitality Review, vol. 35 no. 2
Type: Research Article
ISSN: 2516-8142

Keywords

Open Access
Article
Publication date: 26 October 2021

Kazuyuki Suzuki, Tomonori Hasegawa, Noriaki Kano and Yoshihisa Okamoto

The purpose of this paper is to intelligibly demonstrate the effectiveness of face mask wearing as a means to prevent COVID-19 transmission. Through understanding the benefits of…

5187

Abstract

Purpose

The purpose of this paper is to intelligibly demonstrate the effectiveness of face mask wearing as a means to prevent COVID-19 transmission. Through understanding the benefits of wearing masks, it is hoped to facilitate the change of societal behavior and more people are willing to wear face mask.

Design/methodology/approach

The paper investigates the 50 states in the United States of America (U.S.) and Washington, D.C. that implemented the mask mandates before September 30, 2020, which are divided into four groups: (1) those implemented the statewide mask mandates before June 5, 2020 when World Health Organization (WHO) recommended mask wearing; (2) those implemented statewide mask mandates after June 5, 2020; (3) those implemented partial mandates affecting 30 percent or more of the state’s population; and (4) those implemented partial mandates affecting less than 30 percent. Simple descriptive statistics are analyzed.

Findings

For the 50 U.S. states and Washington, D.C., the higher the mask wearing rate, the lower the number of COVID-19 cases (correlation coefficient: −0.69 (p<0.001)). For the 23 states with mobility reduction of less than 15 percent, the higher the proportion of population required to wear masks, the lower the number of cases. This can be seen from the difference in the number of cases among the four groups by ANOVA (p = 0.013).

Originality

The positive effect of wearing masks is shown based on simple descriptive statistics for intuitive and intelligible understanding, which may lead people to comprehend the importance of wearing masks, and break through their custom, culture, and norms, and wear masks.

Details

Public Administration and Policy, vol. 24 no. 3
Type: Research Article
ISSN: 1727-2645

Keywords

Open Access
Article
Publication date: 8 May 2018

Thomas Wopelka, Ulrike Cihak-Bayr, Claudia Lenauer, Ferenc Ditrói, Sándor Takács, Johannes Sequard-Base and Martin Jech

This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear

13325

Abstract

Purpose

This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear of the cylinder liner in the boundary lubrication regime.

Design/methodology/approach

Conventional nitrided steel, as well as diamond-like carbon and chromium nitride-coated piston rings, were tested against cast iron, AlSi and Fe-coated AlSi cylinder liners. The experiments were carried out with samples produced from original engine parts to have the original surface topography available. Radioactive tracer isotopes were used to measure cylinder liner wear continuously, enabling separation of running-in and steady-state wear.

Findings

A ranking of the material pairings with respect to wear behaviour of the cylinder liner was found. Post-test inspection of the cylinder samples by scanning electron microscopy (SEM) revealed differences in the wear mechanisms for the different material combinations. The results show that the running-in and steady-state wear of the liners can be reduced by choosing the appropriate material for the piston ring.

Originality/value

The use of original engine parts in a closely controlled tribometer environment under realistic loading conditions, in conjunction with continuous and highly sensitive wear measurement methods and a detailed SEM analysis of the wear mechanisms, forms an intermediate step between engine testing and laboratory environment testing.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 17 May 2022

Hao Li, Jialin Sun and Guotang Zhao

With the help of multi-body dynamics software UM, the paper uses Kik–Piotrowski model to simulate wheel-rail contact and Archard wear model for rail wear.

Abstract

Purpose

With the help of multi-body dynamics software UM, the paper uses Kik–Piotrowski model to simulate wheel-rail contact and Archard wear model for rail wear.

Design/methodology/approach

The CRH5 vehicle-track coupling dynamics model is constructed for the wear study of rails of small radius curves, namely 200 and 350 m in Guangzhou East EMU Depot and those 250 and 300 m radius in Taiyuan South EMU Depot.

Findings

Results show that the rail wear at the straight-circle point, the curve center point and the circle-straight point follows the order of center point > the circle-straight point > the straight-circle point. The wear on rail of small radius curves intensifies with the rise of running speed, and the wearing trend tends to fasten as the curve radius declines. The maximum rail wear of the inner rail can reach 2.29 mm, while that of the outer rail, 10.11 mm.

Originality/value

With the increase of the train passing number, the wear range tends to expand. The rail wear decreases with the increase of the curve radius. The dynamic response of vehicle increases with the increase of rail wear, among which the derailment coefficient is affected the most. When the number of passing vehicles reaches 1 million, the derailment coefficient exceeds the limit value, which poses a risk of derailment.

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 7 August 2024

Yosef Jazaa

This study aims to explore the enhancement of mechanical properties in epoxy resin composites through the incorporation of graphene nanoparticles, focusing on their impact and wear

Abstract

Purpose

This study aims to explore the enhancement of mechanical properties in epoxy resin composites through the incorporation of graphene nanoparticles, focusing on their impact and wear resistance. It investigates the role of graphene, both treated and untreated, as a reinforcing agent in composites, highlighting the significance of nanoparticle dispersion and surfactant treatment in optimizing mechanical performance.

Design/methodology/approach

Employing a novel dispersion technique using a drawing brush, this research contrasts with traditional methods by examining the effects of graphene nanoparticle concentrations treated with surfactants – Polyvinylpyrrolidone (PVP) and Sulphonated Naphthalene Formaldehyde (SNF) – on the mechanical properties of epoxy resin composites. The methodology includes conducting a series of impact and wear tests to assess the influence of graphene reinforcement on the composites' performance.

Findings

The findings reveal a marked enhancement in the composites impact resistance and energy absorption capabilities, which escalate with an increase in graphene content. Additionally, the study demonstrates a significant improvement in wear resistance, attributed to the superior mechanical properties, robust interface adhesion and effective dispersion of graphene. The use of surfactants for graphene treatment is identified as a crucial factor in these advancements, offering profound insights into the development of advanced composite materials for diverse industrial uses.

Originality/value

This study introduces a unique dispersion technique for graphene in epoxy composites, setting it apart from conventional methods. By focusing on the critical role of surfactant treatment in enhancing the mechanical properties of graphene-reinforced composites, it provides a novel insight into the optimization of impact and wear resistance.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 27 August 2024

Wei Li, Xiaoxuan Yang, Peng Wang, Zefeng Wen and Jian Han

This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit (EMU) train.

Abstract

Purpose

This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit (EMU) train.

Design/methodology/approach

A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling. Additionally, the dynamic characteristics of the track, wheelset and bogie were also measured. These measurements provided insights into the mechanisms that lead to wheel polygonization.

Findings

The results of the field tests indicate that wheel polygonal wear in the EMU train primarily exhibits 14–16 and 25–27 harmonic orders. The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz, which closely match the dominated frequencies of axle box and bogie vibrations. These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie, which can be excited by wheel/rail irregularities.

Originality/value

The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains. Futher, the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear, providing practical value for improving the safety, performance and maintenance efficiency of high-speed EMU trains.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of over 2000