Search results

1 – 10 of over 195000
Article
Publication date: 16 May 2016

Nicholas G. Dagalakis, Jae-Myung Yoo and Thomas Oeste

The purpose of this paper is a description of DITCI, its drop loads and sensors, the impact tools, the robot dynamic impact safety artifacts, data analysis, and modeling of test

Abstract

Purpose

The purpose of this paper is a description of DITCI, its drop loads and sensors, the impact tools, the robot dynamic impact safety artifacts, data analysis, and modeling of test results. The dynamic impact testing and calibration instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human.

Design/methodology/approach

In this paper, we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations.

Findings

A computer data acquisition system may collect a variety of impact motion, force and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts with embedded markers, used to display the severity of impact injury tissue deformation.

Research limitations/implications

DITCI and the use of biosimulant human tissue artifacts will permit a better understanding of the severity of injury, which will be caused in the case of a robot impact with a human, without the use of expensive cadaver parts. The limitations are set by the ability to build artifacts with material properties similar to those of various parts of the human body.

Practical implications

This technology will be particularly useful for small manufacturing companies that cannot afford the use of expensive instrumentation and technical consultants.

Social implications

Impact tests were performed at maximum impact force and average pressure levels that are below, at and above the levels recommended by a proposed International Organization for Standardization standard. These test results will be used to verify whether the adopted safety standards will protect interactive robots human operators for various robot tools and control modes.

Originality/value

Various research groups have used human subjects to collect data on pain induced by industrial robots. Unfortunately, human safety testing is not an option for human–robot collaboration in industrial applications every time there is a change of a tool or control program, so the use of biosimulant artifacts is expected to be a good alternative.

Details

Industrial Robot: An International Journal, vol. 43 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 November 2019

Radek Doubrava, Martin Oberthor, Petr Bělský and Jan Raška

The purpose of this paper is to describe the approach for the design of a jet engine composite air inlet for a new generation of jet trainer aircraft from the perspective of…

Abstract

Purpose

The purpose of this paper is to describe the approach for the design of a jet engine composite air inlet for a new generation of jet trainer aircraft from the perspective of airworthiness requirements regarding high-speed impact resistance.

Design/methodology/approach

Validated numerical simulation was applied to flat test panels. The final design was optimised and verified by validated numerical simulation and verified by testing on a full-scale demonstrator. High-speed camera measurement and non-destructive testing (NDT) results were used for the verification of the numerical models.

Findings

The test results of flat test panels confirmed the high durability of the composite structure during inclined high-speed impact with a near-real jet inlet load boundary condition.

Research limitations/implications

Owing to the sensitivity of the composite material on technology production, the results are limited by the material used and the production technology.

Practical implications

The application of flat test panels for the verification and tuning of numerical models allows optimised final design of the air inlet and reduces the risk of structural non-compliance during verification tests.

Originality/value

Numerical models were verified for simulation of the real composite structure based on high-speed camera results and NDT inspection after impact. The proposed numerical model was simplified for application in a real complex design and reduced calculation time.

Details

International Journal of Structural Integrity, vol. 11 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 April 2006

K.T. Tsai, F‐L. Liu, E.H. Wong and R. Rajoo

This paper aims to present a new micro‐impact tester developed for characterizing the impact properties of solder joints and micro‐structures at high‐strain rates, for the…

Abstract

Purpose

This paper aims to present a new micro‐impact tester developed for characterizing the impact properties of solder joints and micro‐structures at high‐strain rates, for the microelectronic industry, and the results evaluated for different solder ball materials, pad finishes and thermal histories by using this new tester. Knowledge of impact force is essential for quantifying the strength of the interconnection and allows quantitative design against failure. It also allows one‐to‐one comparison with the failure force measured in a standard quasi‐static shear test.

Design/methodology/approach

An innovative micro‐impact head has been designed to precisely strike the specimen at high speed and the force and displacements are measured simultaneously and accurately during the impact, from which the failure energy may be calculated.

Findings

The paper demonstrates that, peak loads obtained from the impact tests are between 30 and 100 percent higher than those obtained from static shear tests for all combinations of solder alloy and pad finish. The SnPb solder alloy had the maximum energy to failure for all pad finishes. Of all the lead‐free solders, the SnAg solder alloy had the highest energy to failure. Static shearing induces only bulk solder failure for all combinations of solder alloy and pad finish. Impact testing tends to induce bulk solder failure for SnPb solder and a mixture of bulk and intermetallic failure in all the lead‐free solder alloys for all pad finishes. In general, the peak loads obtained for solder mask defined pads are significantly higher than those for non‐SMD (NSMD) pads. The results obtained so far have highlighted the vulnerability of NSMD pads to drop impact.

Practical implications

The work provides a new solution to the microelectronics industry for characterizing the impact properties of materials and micro‐structures and provides an easy‐to‐use tool for research or process quality control.

Originality/value

The new micro‐impact tester developed is able to perform solder ball shear testing at high speeds, of up to 1,000 mm/s, and to obtain fracture characteristics similar to those found in drop impact testing using the JEDEC board level testing method JESD22‐B111 – but without the complexity of preparing specialized boards. This is not achievable using standard low‐speed shear testers.

Details

Soldering & Surface Mount Technology, vol. 18 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 March 2012

Rosario Borrelli, Umberto Mercurio and Simona Alguadich

The purpose of this paper is to improve knowledge of the water impact phenomenon from both the experimental and numerical points of view.

Abstract

Purpose

The purpose of this paper is to improve knowledge of the water impact phenomenon from both the experimental and numerical points of view.

Design/methodology/approach

A drop test campaign on water was carried out on semi‐cylindrical steel structures. Therefore, an experimental database for validation purpose was generated. Subsequently, a finite element model was developed in LS‐DYNA in order to reproduce the tests. The behaviour of water was modeled by using the smoothed particle hydrodynamics (SPH) methods. Numerical simulations were compared to experimental data and the influence of some numerical parameters on the simulations was investigated.

Findings

The FE model was found to be able to reproduce the tests, at least in terms of acceleration peak and distribution of plastic deformation. Acceptable prediction was also found for the pressure peak in soft areas.

Research limitations/implications

In case of low velocity impact, the water model was found to be too rigid and the acceleration peaks were over‐predicted by the simulations. Further investigations are needed to adjust the water model in order to obtain better results also in the case of low velocity impact.

Originality/value

The experimental database could be very useful to the crashworthiness community to validate their numerical models. Moreover, the present paper provides guidelines to modelling the water impact correctly.

Article
Publication date: 6 November 2018

Kamila Kustron, Vaclav Horak, Radek Doubrava and Zdobyslaw Jan Goraj

The risk of hail-impact occurrence that can decrease local strength property must be taken into account in the design of primary airframe structures in aviation, energy and space…

Abstract

Purpose

The risk of hail-impact occurrence that can decrease local strength property must be taken into account in the design of primary airframe structures in aviation, energy and space industries. Because of the high-speed of hail impact in operation, it can affect the load carrying capacity. Testing all impact scenarios onto real structure is expensive and impractical. The purpose of this paper is to present a cost-effective hybrid testing regime including experimental tests and FEM-based simulations for airframe parts that are locally exposed to the impacting hail in flight.

Design/methodology/approach

Tested samples (specimens) are flat panels of laminated and sandwich carbon/epoxy composites that are used in designing lightweight new airframes. The presented numerical simulations provide a cost effective and convenient tool for investigating the hail impact scenarios in the design process. The smoothed particle hydrodynamics (SPH) technique was selected for the simulation of projectiles. The most commonly used shape of projectiles in hail impact tests is the ice ball with a defined diameter. The proposed simulation technique was verified and validated in tests on flat composite panels (specimens).

Findings

Integration of the numerical analyses with high-speed impact tests of hail onto flat laminated and sandwich composite shells has been presented, and a developed simulation model for impact results assessment was obtained.

Originality/value

The tested coupons (specimens) are flat panels as representative of structural design deployed in real aircraft structures. These numerical simulations provide a cost effective and convenient tool for hail impact scenarios in the design process.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 May 2022

Russo Swart, Feras Korkees, Peter Dorrington and Joshua Thurman

Composites 3D printing has the potential to replace the conventional manufacturing processes for engineering applications because it allows for the manufacturing of complex shapes…

Abstract

Purpose

Composites 3D printing has the potential to replace the conventional manufacturing processes for engineering applications because it allows for the manufacturing of complex shapes with the possibility of reducing the manufacturing cost. This paper aims to analyse the performance of 3D printed fibre reinforced polymer composites to investigate the energy absorption capabilities and the residual properties before and after impact.

Design/methodology/approach

Various composites composed of carbon fibres and Kevlar fibres embedded into both Onyx and nylon matrix were printed using Markforged-Two 3D printers. Specimens with different fibre orientations and fibre volume fractions (Vf) were printed. A drop-weight impact test was performed at energies of 2, 5, 8 and 10 J. Flexural testing was performed to evaluate the flexural strength, flexural modulus and absorbed energy under bending (AEUB) before and after impact. Additionally, 3D printed carbon fibre composites were tested at two different temperatures to study their behaviour under room and sub-ambient temperatures. Failure modes were investigated using optical and high depth of field microscopes for all 3D printed composite samples.

Findings

Kevlar/nylon composites with a unidirectional lay-up and 50% Vf exhibited the most prominent results for AEUB at room temperature. The high-Vf carbon fibre composite showed the highest ultimate strength and modulus and performed best at both temperature regimes.

Originality/value

The work, findings and testing produced in this paper are entirely original with the objective to provide further understanding of 3D printed composites and its potential for use in many applications.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 May 2020

Mayyadah S. Abed, Payman S. Ahmed, Jawad K. Oleiwi and Basim M. Fadhil

Composite laminates are considered one of the most popular damage-resistant materials when exposed to impact force in civil and military applications. In this study, a comparison…

351

Abstract

Purpose

Composite laminates are considered one of the most popular damage-resistant materials when exposed to impact force in civil and military applications. In this study, a comparison of composites 12 and 20 layers of fabrics Kevlar and ultrahigh-molecular-weight poly ethylene (UHMWPE)-reinforced epoxy under low-velocity impacts represented by drop-weight impact and Izod pendulum impact has been done. During the Izod test, Kevlar-based composite showed damage at the composite center and fiber breakages. Whereas delamination was observed for UHMWPE reinforced epoxy (PE). The maximum impact strength was for Kevlar-reinforced epoxy (KE) and increases with the number of laminates. Drop-weight impact test showed the highest absorbed energy for (KE) composites. The results revealed that different behavior during the impact test for composites belongs to the impact mechanism in each test.

Design/methodology/approach

Aramid 1414 Kevlar 49 and UHMWPE woven fabrics were purchased from Yixing Huaheng High-Performance Fiber Textile Co. Ltd, with specifications listed in Table 1. Epoxy resin (Sikafloor-156) is supplied from Sika AG. Sikafloor-156 is a two-part, low-viscosity, solvent-free epoxy resin, with compressive strength ∼95 N/mm², flexural strength ∼30 N/mm² and shore D hardness 83 (seven days). The mixture ratio of A/B was one-third volume ratio. Two types of laminated composites with different layers 12 and 20 were prepared by hand layup: Kevlar–epoxy and UHMWPE–epoxy composites as shown in Figure 1. Mechanical pressure was applied to remove bubbles and excess resin for 24 h. The composites were left in room temperature for seven days, and then composite plates were cut for the desired dimensions. Low-velocity impact testing, drop-weight impact, drop tower impact system INSTRON CEAST 9350 (see Figure 2) was facilitated to investigate impact resistance of composites according to ASTM D7137M (Test Method for Compressive, 2005). Low-velocity impact tests have been performed at room temperature for composite with dimensions 10 × 15 cm2 utilizing a drop tower (steel indenter diameter 19.85 mm as shown in Figure 3), height (800 mm), drop mass (5 kg) and speed (3.96 m/s). Special impact equipment consisting of vertically falling impactor was used in the test. The energy is obtained from Drop tower impact systems, (2009) E = ½ mv2 (2.1). The relationship between force–time, deformation–time and energy–time and deformation was obtained. Energy–deformation and force–deformation relationships were also obtained. The depth of penetration and the radius of impactor traces were recorded. Izod pendulum impact test of plastics was applied according to ASTM D256 (Test Method for Compressive, 2005). Absorbed energy was recorded to compute the impact strength of the specimen. The specimen before the test is shown in Figure 4.

Findings

In order to investigate two types of impact: drop-weight impact and Izod impact on damage resistance of composites, the two tests were done. Drop-weight impact is dropping a known weight and height in a vertical direction with free fall, absorbed energy can be calculated. Izod impact measures the energy required to break a specimen by striking a specific size bar with a pendulum (Test Method for Compressive, 2005; Test Methods for Determining, 2018). The results obtained with the impact test are presented. Figure 5 shows the histogram bars of impact strength of composites. It can be noticed that Kevlar–epoxy (KE) composites give higher energy strength than UHMWPE–epoxy (PE) in 12 and 20 plies. The increasing percentage is about 18.5 and 5.7%. It can be observed in Figure 6 that samples are not destructed completely due to fiber continuity. Also, the delamination occurs obviously for UHMWPE–epoxy more than for Kevlar-based composite, which may due to weak binding between UHMWPE with an epoxy relative with Kevlar.

Practical implications

The force–time curves for Kevlar–epoxy (KE) and UHMWPE–epoxy (PE) composites with 12 and 20 plies are illustrated respectively in Figure 7. The contact duration between indenter and composite surface is repented by the force–time curves, so the maximum force reaches with certain displacement. It can be seen that maximum force was (13,209, 18,734.9, 23,271.07 and 19,825.38 N) at the time (3.97, 4.43, 3.791 and 4.198 ms) for 12 KE, 12 PE, 20 KE and 20 PE, respectively. The sharp peaks of KE composite are due to the lower ductility of Kevlar compared with UHMWPE. These results agree with the results of Ahmed et al. (2016). Kevlar-based composites (KE) showed lower impact force and crack propagates in the matrix with fast fiber breakage compared with PE composites, whereas the latter did not suffer from fabric breakage in 12 and 20 plies any more (see Figure 8). Figure 9 illustrates force–deformation curves, for 12 and 20 plies of Kevlar–epoxy (KE) and UHMWPE–epoxy (PE) composites. Curve's slop is considered the specimen's stiffness and the maximum displacement. To investigate the impact behavior of the four different composites, the comparison was made among the relative force–deformation curves. The maximum displacement was 5.119, 3.443, 1.173 and 1.17 mm for 12KE, 12 PE, 20 KE and 20 PE, respectively. It seems that UHMWPE-based composite (PE) presents lower deformation than Kevlar-based composites (KE) at a same number of laminates, although the maximum displacement is for 12 PE and 12 KE (see Figure 8). Kevlar-based composites (KE) showed more damage than UHMWPE-based composite (PE), so the maximum displacement is always higher for KE specimens with maximum indenter trace diameter (D∼11.27 mm). The onset of cracks begins along fibers on the impacted side for 20 KE and 20 PE specimens with lower indenter trace (D∼5.42 and 5.96 mm), respectively (see Table 2). These results refer to the lower stiffness of KE composites (see the slope of the curve) relative to PE composites. This result agreed with (Vieille et al., 2013) when they found that the theoretical stiffness of laminated composite during drop-weight impact depends significantly on fiber nature (Fadhil, 2013). The matrix cracking is the first type of damage that may not change stiffness of composites overall. Material stiffness changes due to the stress concentration represented by matrix cracks, delamination and fiber breakage (Hancox, 2000). Briefly, the histogram (see Figure 10) showed that the best impact behavior was for 20 KE, highest impact force with lower deformation, indenter trace diameter and contact time. Absorbed energy–time and absorbed energy–deformation curves for composites are shown in Figures 11 and 12, respectively. The maximum absorbed energy was (36.313, 29.952, 9.783 and 6.928 J) for 12 KE, 12 PE, 20 KE and 20 PE, respectively. Test period time is only 8 ms, but the time in which composites reached maximum absorbed energy was (4.413, 3.636, 2.394 and 2.408 ms). The maximum absorbed energy was for 12 KE with lower rebound energy because part of kinetic energy transferred to potential energy kept in the composite as material damage (see Figures 3 and 4). This composite absorbs more energy as material damage which kept as potential energy. Whereas other composites 12 PE, 20 PE and 20 KE showed less damage, lower absorbed energy and higher rebound energy, which appeared in different peak behavior as the negative value of energy. Also from the absorbed energy–time curves, it had been noticed significantly the maximum contact time of indenter with composite was 4.413 ms for 12 KE, which exhibits higher deformation (5.119 mm), whereas other composites 12 PE, 20 KE and 20 PE showed less damage, contact time and deformation as (3.443, 1.173, 1.17 mm), respectively.

Originality/value

The main goal of the current study is to evaluate the performances of armor composite made off of Kevlar and UHMWPE fabrics reinforced epoxy thermosetting resin under the low-velocity impact. Several plates of composites were prepared by hand layup. Izod and drop-weight impact tests were facilitated to get an indication about the absorbed energy and strength of the armors.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 February 2015

Martin Kadlec, Robin Hron and Timo Grieser

T-sections of carbon fibre-reinforced composites are prone to delamination because they lack reinforcement through their thicknesses. The purpose of this paper is to present the…

Abstract

Purpose

T-sections of carbon fibre-reinforced composites are prone to delamination because they lack reinforcement through their thicknesses. The purpose of this paper is to present the structural response of cost-effective laminated T-sections when subjected to various types of loads and impacts.

Design/methodology/approach

The core of the automated manufactured beams is analysed. Pull-off, flange tension, and flange bending were tested for specimens extracted from an I-beam. The failure processes for all of the specimens were investigated in detail, leading to the statistical evaluation of the failure modes.

Findings

A correlation is apparent between the impact damage energy and certain fracture patterns. These results can be used to assess damage tolerance when designing stiffeners, beams, and various complex structures. The increase in strength by 25 per cent was measured for the advanced stitching located in the web section for the flange tension test.

Originality/value

The resistance displayed by the T-sections toward impact damage was studied experimentally, as the literature describing this topic is limited. The prevalence of one fracture mode for higher impact energies shows a possible advantage of the cost-effective preforms for the damage tolerant philosophy.

Details

International Journal of Structural Integrity, vol. 6 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Book part
Publication date: 4 May 2018

Zulmiardi and Meriatna

Results – From a hardening test, we then tested with an impact tester charpy Treviolo H060. The results showed that the impact strength is escalated up to 29.09% post-hardening…

Abstract

Results – From a hardening test, we then tested with an impact tester charpy Treviolo H060. The results showed that the impact strength is escalated up to 29.09% post-hardening circle, which was observed using electrical microscope. The value of steel strength increased 2.12 J/mm2 compared with earlier hardening process, which is, 1.57 J/mm2. The results showed that the fracture in the welding process without the hardening process is a brittle fracture that is shown by the flat crystal structure; on the other hand, the hardening process before welding shows a form of coarse-looking structure indicating that the specimen has an impact towards which the toughness is higher.

Research Limitations/Implications – The effect influence of the hardening process to the impact strength of welded joints before and after the hardening process SMAW AISI 1050 steel hardening process. The mechanical properties test is done with the equipment impact charpy.

Practical Implications – The field we often encounter is erosion or wear out occurring in the construction, for example, many equipments such as agricultural equipment, bridges, ship construction, motor shaft, machining such as hand tools, small rings, and agricultural tools.

Originality/Value – This is the first reported research on impact strength using the hardening test.

Article
Publication date: 13 April 2015

Roman Ružek, Konstantinos Tserpes and Evaggelos Karachalios

Impact and fatigue are critical loading conditions for composite aerostructures. Compression behavior after impact and fatigue is a weak point for composite fuselage panels. The…

Abstract

Purpose

Impact and fatigue are critical loading conditions for composite aerostructures. Compression behavior after impact and fatigue is a weak point for composite fuselage panels. The purpose of this paper is to characterize experimentally the compression behavior of carbon fiber reinforced plastic (CFRP) stiffened fuselage panels after impact and fatigue.

Design/methodology/approach

In total, three panels were manufactured and tested. The first panel was tested quasi-statically to measure the reference compression behavior. The second panel was subjected to impact so as to create barely visible impact damage (BVID) at different locations, then to fatigue and finally to quasi-static compression. Finally, the third panel was subjected to impact so as to create visible impact damage (VID) at different locations and then to quasi-static compression. The panels were tested using ultrasound inspection just after manufacturing to check material quality and between different tests to detect impact and fatigue damage accumulation. During tests the mechanical behavior of the panel was monitored using an optical displacement measurement system.

Findings

Experimental results show that the presence of impact damage significantly degrades the compression behavior of the panels. Moreover, the combined effect of BVID and fatigue was proven more severe than VID.

Originality/value

The paper gives information about the compression after impact and fatigue behavior of CFRP fuselage stiffened panels, which represent the most realistic loading scenario of composite aerostructures, and describes an integrated experimental procedure for obtaining such information.

Details

International Journal of Structural Integrity, vol. 6 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 195000