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Abstract

Purpose — With the help of multi-body dynamics software UM, the paper uses Kik—Piotrowski model to
simulate wheel-rail contact and Archard wear model for rail wear.

Design/methodology/approach — The CRH5 vehicle-track coupling dynamics model is constructed for the
wear study of rails of small radius curves, namely 200 and 350 m in Guangzhou East EMU Depot and those 250
and 300 m radius in Taiyuan South EMU Depot.

Findings — Results show that the rail wear at the straight-circle point, the curve center point and the circle-
straight point follows the order of center point > the circle-straight point > the straight-circle point. The wear on
rail of small radius curves intensifies with the rise of running speed, and the wearing trend tends to fasten as the
curve radius declines. The maximum rail wear of the inner rail can reach 2.29 mm, while that of the outer rail,
10.11 mm.

Originality/value — With the increase of the train passing number, the wear range tends to expand. The rail
wear decreases with the increase of the curve radius. The dynamic response of vehicle increases with
the increase of rail wear, among which the derailment coefficient is affected the most. When the number of
passing vehicles reaches 1 million, the derailment coefficient exceeds the limit value, which poses a risk of
derailment.

Keywords EMU depot, Small radius curve, Rail wear, Vehicle-track coupling dynamics, Dynamic response

Paper type Research paper

1. Introduction

As trains run on railway tracks, the rolling and slipping occurred between the wheel and rail
tend to incur wear to both, with small radius curves being a very distinctive example of such
hazard. The complex issue of wheel-rail wear involves many factors, such as the structural
forms of the train and track, materials of wheel-rail system, wheel-rail interaction mode,
temperature, humidity and stimulation of various effects (Lewis & Olofsson, 2009). From the
perspective of track maintenance, rail wear poses an important form of rail defects (Zou,
Yang, Lu, & Xing, 2010), directly related to operation safety and maintenance costs of the
wheel-rail system. Domestic and foreign researchers have made extensive studies for a long
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time. The paper gets 2,551 results on Web of Science, a foreign search engine, by entering the
search subject “rail wear”, as shown in Figure 1, while 961 results from “CNKI”, a domestic
search engine at eight resource libraries (including academic journals (716), academic
dissertations (150), conferences (39), yearbooks (4), patents (25), standards (1), achievements
(7) and special journals (19), as shown in Figure 2.

It can be seen from the search results that since the 21st century, significant progress has
been made in domestic and foreign researches on rail wear, and the number of publications
increases rapidly. The comprehensive analysis on existing literature leads to a rough
categorization as follows: site investigation and test of rail wear (Deters & Proksch, 2004;
Lewis et al, 2019; Su et al., 2019; Hu et al., 2020): for example, Ludger Deters and Matthias
Proksch tested the friction and wear between wheel and rail materials; theoretical analysis on
rail wear (Sladkowski & Sitarz, 2004; Zhao & Zeng, 1995; Ramalho, 2015; Asih, Ding, &
Kapoor, 2012; Zhu, Zeng, Zhang, & Y1, 2019): for example, Aleksander Sladkowski and Marek
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Figure 3.
Vehicle-track coupling
dynamics model of
CRHs EMU

Sitarz studied the wheel-rail contact relation and the two-point contact between the two with
finite element software Ansys, and based on these researches, they think that severe wear
would occur on the wheel flange in case of two-point contact; prediction of rail wear and life
expectance left (Dang & Maitournam, 2002; Meehan, Daniel, & Campey, 2005; Wang, Wang,
Wang, & Liu, 2011; Ding, Lewis, Beagles, & Wang, 2018; Pavlik, Gerlici, & Lack, 2019; Khan,
Persson, Lundberg, & Stenstrom, 2017): for example, Dang Van K and Maitournam M H
predicted the trends of rail fatigue and wear with the help of finite element analysis, converted
the pressure distribution on rail top into spherical pressure distribution on equivalent plastic
volume using 2D finite element and Fourier transform, and finally predicted the fatigue and
wear of rail surface at different loading points via the calculation of fatigue distribution.

It can be seen from above that researchers mainly took operational lines as the study
objects for rail wear, while limited focus was given to the rail wear occurred to EMU running
track and EMU depot which do not take passenger transport tasks but register a large
amount of small radius curves, generally 200-350 m (Feng, 2018). In this context, the paper
takes on the rail wear of small radius curve in EMU depot as the research subject.

2. Analysis model of rail wear of small radius curve

The analysis model of rail wear of small radius curve constructed includes four parts, namely
vehicle-track coupling dynamics model, wheel-rail contact model, material wear model and
profile renewal processing.

2.1 Vehicle-track coupling dynamics model

The vehicle-track coupling dynamics model of CRH5 EMU is constructed based on multi-
body dynamics software UM, as shown in Figure 3. With one carbody, two bolsters, two
frames, four wheelsets and eight axle boxes, the vehicle records 62 in total degrees of freedom,
including 6 degrees of freedom for the body, bolster, frame and wheelset, while only that of
head nodding is considered for the axle box. The primary and the secondary suspensions are
simulated with linear or nonlinear spring-damping force elements in accordance with actual
vehicle structure. The primary suspension mainly includes primary spring, primary damping
and tumbler node, while the secondary suspension, the air spring, transverse damper, anti-
hunting damper, traction rod, transverse stop, etc.

Line 1 is R200 m and R350 m inverse curves on No. 19 passenger rail at EMU depot in
Guangzhou East Station, with the cross-section and profile of the line shown in Figure 4. Line
2 is R250 m and R300 m inverse curves on No. 16 passenger rail at EMU depot in Taiyuan
South Station, with the cross-section and profile of the line shown in Figure 5. For a realistic
simulation of the flexible characteristic of the track, the paper chooses finite element method
to simulate 3D Timoshenko beam as the rail.

2.2 Wheel-rail contact model

The wheel-rail contact model constitutes an important part for the interaction of wheel and
rail. Traditional FASTSim model is a single-point contact model constructed based on Hertz
ellipse theory. Despite the wide application of this model, the wheel-rail profile tends to form a
conformal contact as the wheel or rail wear reaches a certain level where the single-point
contact turns into a multipoint one. This is particularly true when it comes to small radius
curves, therefore any persisting efforts to apply this model seem irrational. The CONTACT
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precision theory developed by Kalker is the best option (Kalker, 1990) when it comes to wheel-
rail contact, but the calculation efficiency turns out to be unsatisfying. In this light, the paper
chooses Kik—Piotrowski model (Piotrowski & Chollet, 2005), which promises both the
calculation precision of CONTACT and great calculation efficiency, while avoiding the
calculation error caused by abnormal curvature fluctuation.

2.3 Archard wear model
Domestic and foreign scholars have made extensive studies on material wear and come up

with different calculation models, among which the Archard model, Specht model and
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Plasticity model (Lin, 2014) are the top choices. The paper chooses the Archard wear model
which is constructed on the premise that volume wear and the work of creep force register a
linear relation.

The frictional contact area A, is made up of cross-sectional area of micro-convexs with a
radius of 7, as shown below.

A, = nor’ @)
where 7 is the number of micro-convexs.

In case where no slipping occurs, the total number of collisions between micro-convexs Np
is as follows:

F

N, = 2
P o, @
where F'is the load acting on the contact area and o is the plastic flow stress of the material.
In relative slipping, it is assumed that a piece of hemispherical wear debris is produced in
every 2r displacement, therefore wear V,, produced by the slipping of s can be evaluated by

the following equation:

s 2 kF

I/w:]\]pggkﬂrs_——s (3)

- 30,

where % is the wear coefficient.
It can be seen from the theory of elastic mechanics that for metal materials, hardness H
maintains a certain correlation with o, namely

H = 30, ()]
Therefore, Equation (3) can be written as follows:

sk
Va=h ®

The wear coefficient 2 has many impact factors, among which the friction temperature,
imposed load, material and rolling speed have great impact, most of which are determined via
tests. The research results of Reference (Olofsson & Telliskivi, 2003; Jendel & Berg, 2002)
indicate that the most severe wear occurs in areas where p > 0.8H. It needs to be noted that p is
the normal compressive stress on the contact surface, while H, the hardness of the softer
material of contact. In this case, % is 0.03-0. 04.

According to the Coulomb law of friction, the equation of slipping friction force is as
follows:

Fy = pFy ©®)

where F'is slipping friction; u is dynamic friction coefficient and F)y is the normal force.
Therefore, Equation (5) can be expressed as follows:
sF; N sF 7

Ve=k—=F

L ™

It is also known that frictional work W can be expressed as follows:
W = sFy ©®)



Since %, p and H are all material-related parameters, it is assumed that

K:,,% ©

The following equation can be obtained by substituting Equations (8) and (9) into Equation (7):
V=KW (10)

According to Archard wear model (Lin, 2014; Olofsson & Telliskivi, 2003; Jendel & Tomas,
2002), wear does not occur at the adhesion area of the contact surface due to the lack of
relative slipping. Therefore, V,,s and F'in Equation (5) can be expressed as follows:

Vo= / hAdt 11)
At
S = US]ipdt (12)
At
F=pA 13)

where h is the wear speed of the discrete point along the depth direction; A is the contact area
and vy, is the relative slip speed at wheel-rail contact surface.

The wear speed of discrete point can be obtained in accordance with Equations (5) and
(10)—(13), namely

, _ Uslipp
h= k= (14)

The wear depth A% of the discrete point can be obtained as follows via time integration for
Equation (14):

b
A= / Rl g (15)
At

Therefore, Equation (15) can be converted into the following in accordance with Equations (8)
and (10):

Al = / K (v Fy )t (16)
At

The friction power across the contact area can be obtained by the integration of the friction
power of all units at the wheel-rail contact area, and the frictional work and wear volume can
be further obtained by extended integration. The current wear on the rail profile is located via
the combination of the wear volume and position of the contact point. Iterative calculation is
used to realize the wear evolution on the rail profile. When the normal depth of rail wear or the
number of passing vehicles reaches the set value during iterative calculation, current
iteration is terminated. The profile obtained via smoothness processing is used as the initial
profile for the next iteration to realize profile renewal. It is set that wear occurs 7.5 m before
and after the straight-circle point, center point and circle-straight point (a range of 15 m) are
collected for analysis, together with the profile at the above-mentioned characteristic points.
According to the trial calculation, the paper chooses 10,000 round trips of vehicles/trains as
the premise for iteration.
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3. Rail wear characteristics of small radius curve in EMU depot

Given the different running speeds (15, 20, 25 and 30 km-h ™) and the numbers of passing
vehicles/trains (100,000, 200,000, 300,000, 400,000, 500,000, 600,000, 700,000, 800,000, 900,000
and 1 million vehicles), the paper conducts analysis on rail wear characteristics of £200 m,
R250 m, R300 m and R350 m small radius curves in EMU depot.

3.1 R200 m small radius curve in Guangzhou East Station

Figure 6 shows the accumulative wears as different numbers of vehicles pass through the
straight-circle point of R200 m small radius curve at 30 km-h~'. It can be seen that wears
accumulated to the inner rail wear of R200 m small radius curve are found mainly on the right
side of the centerline of the cross-section, with the most severe wear mainly locating at
7.5 mm; while the outer rail wear concentrates on the left side of the centerline with the most
severe hazard locating at 30.8 mm. It needs to be noted that in the case of the latter, the most
severe wear has exceeded the 23 mm arc length of the R300 mm curve at the railhead and
entered (R13 mm) connecting arc between rail top and rail side; the wear of the outer rail of the
curve exceeds that of inner rail both in extent and range, covering the entire top width on the
left of the centerline, and there are two wear waveforms on the connecting line between
connecting points of two top arcs, but only slight wear is found at connecting points. Similar
phenomenon also occurs in other working conditions; rail wear worsens as more vehicles/
trains pass by.

The center point and the circle-straight point deliver similar wear characteristics.
Figure 7 shows the maximum accumulative wear when different numbers of vehicles
(100,000, 200,000, 300,000, 400,000, 500,000, 600,000, 700,000, 800,000, 900,000 and 1 million
vehicles) pass through the straight-circle point, center point and circle-straight point of the
R200 m small radius curve in EMU depot of Guangzhou East Station at different speeds
(15, 20, 25 and 30 km -h™Y); Table 1 shows the extend and the position of the maximum
wear, as well as the wear range at the straight-circle point, center point and circle-straight
point of the 200 m small radius curve when the number of vehicles passing through the
curve reaches its limit.

The following conclusions can be drawn from Figure 7 and Table 1.

(1) When the same number of vehicles passes through 200 m small radius curve, the
wear severity at the side rail of the curve decreases in the order of the center point,
circle-straight point and straight-circle point.

(2) When one million vehicles/trains pass, the inner rail wear at the straight-circle point is
1.06 mm with the maximum wear speed of 15 km - h™* and the outer rail wear is
1.49 mm with the maximum wear speed of 30 km - h™?; inner and outer rail wears at
the center point of the curve are 1.88 mm and 10.11 mm, respectively, with the
maximum wear speed of 15 km - h™%; the inner rail wear at the circle-straight point is
1.72 mm with the maximum wear speed of 15 km - h™! and the maximum outer rail
wear is 7.10 mm with the maximum wear speed of 25 km - h™%.

(3) The most severe wear of the inner rail of the curve locates in 6.70-7.30 mm range with
a few exceptions, while that of outer rail wear, in —34.70——28.40 mm range.

(4) The inner rail wear at the straight-circle point locates in the range of —18.40—
32.15 mm, while the outer rail wear locates in —35.05-16.35 mm range. The inner
rail wear at the center point of the curve locates in —2.40-30.75 mm range and the
outer rail wear locates in —35.05-17.40 mm range; the inner rail wear at the circle-
straight point locates in —23.40-30.75 mm range and the outer rail wear locates in
—35.00-16.40 mm range.
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Inner rail of curve Outer rail of curve
Position of Position of
Speed/  Characteristic  maximum Maximum Wear range/ maximum Maximum Wear r
(kmh™) pointof curve  wear/mm  wear/mm mm wear/mm  wear/mm  ange/mm
15 Straight-circle 7.10 1.06 —18.40-30.00 —2840 144  —35.05-16.35
point
Center point of 7.00 1.88 —2240-30.75  —34.65 10.11 —35.05-17.40
curve
Circle-straight 6.75 1.72 —2340-30.75  —34.50 540  —35.05-16.40
point
20 Straight-circle 7.20 0.69 —14.40-29.20  —30.60 140  —35.05-11.40
point
Center point of 7.30 1.83 —2140-30.75  —34.70 997  —35.05-1340
curve
Circle-straight 6.70 1.64 —2240-30.75  —34.50 5.15 —35.05-13.40
point
25 Straight-circle 7.20 0.60 —12.40-29.20  —-30.70 145 —35.05-10.40
point
Center point of 10.15 1.74 —21.40-30.75  —34.65 9.73 —35.05-15.40
curve
Circle-straight 6.75 1.59 —2240-30.75  —34.60 710  —35.05-14.40
point
Table 1. 30 Straight-circle 7.20 0.67 —1340-3215 —30.80 149  —35.05-10.40
Maximum wear, pomt
position and range at Center point of 6.80 1.67 —2140-30.75  —34.70 9.70 —35.05-12.40
characteristic points of curve
R200 m small Circle-straight 6.80 1.51 —2240-30.75  —34.60 097  —35.05-1340
radius curve point

3.2 R350 m small radius curve in Guangzhou East Station
Figure 8 shows the accumulative rail wear when different numbers of vehicles pass through

the centerlpoint of R350 m small radius curve in EMU depot of Guangzhou East Station at
30kmh™".
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Figure 9.

Cumulative rail wear of
R350 m small

radius curve

It can be seen from Figure 8 that outer rail wear of the curve mainly occurs on the right side of
the centerline of the cross-section, with the maximum wear mainly in 28-35 mm range, which
has exceeded the 23 mm arc length of R300 mm curve at the railhead and entered (R13 mm)
the connecting arc between rail top and rail side; the inner rail wear mainly occurs on the left
side of the centerline of the cross-section, with the maximum wear mainly occurring in 6.8—
7.1 mm range; the outer rail wear exceeds inner rail wear, covering the entire top width on the
right of the centerline, and there are two wear waveforms on the connecting line between
connecting points of two top arcs, but the wear at connecting points is slight in comparison;
rail wear increases as more vehicles/trains pass by.

The wear at the straight-circle point and that at circle-straight point can be quite similar.
Figure 9 shows the maximum accumulative rail wear when different numbers of vehicles
pass through the straight-circle point, center point and circle-straight point of £350 m small
radius curve in EMU depot of Guangzhou East Station at different speeds; Table 2 shows the
maximum rail wear, position and range at the straight-circle point, center point and circle-
straight point of R350 m small radius curve when the number of vehicles/trains passing
through the curve reaches the limit.

The following conclusions can be drawn from Figure 9 and Table 2.

(1) When the same number of vehicles passes through 350 m small radius curve, the
wear severity at the side rail of the curve decreases in the order of the center
point > the circle-straight point > the straight-circle point.

(2) When one million vehicles/trains pass, the inner and outer rail wear at the straight-
circle point is 1.03 and 0.93 mm, respectively, with the maximum wear speed of 15 km
- h~% inner rail wear at the center point of the curve is 1.31 mm with the maximum
wear speed of 15 km - h™! and the outer rail wear is 3.12 m with the maximum wear
speed of 25 km - h™!; the maximum inner rail wear at the circle-straight point is

1.32 mm with the maximum wear speed of 15 km - h™* and the outer rail wear is
2.22 mm with the maximum wear speed of 30 km - h™'.

(3) When an increasing number of vehicles passes through R350 m curve at
different speeds, the maximum inner rail wear at straight-circle point locates in the
range of —8.20——7.05 mm with an average of —7.68 mm, and the maximum outer
rail wear locates in the range of 8.00-28.10 mm with an average of 23.05 mm; the
maximum inner rail wear at center point locates in the range of —8.30——6.80 mm
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Outer rail of curve
Position of

Inner rail of curve
Position of

Rail wear
of small radius

Speed/ Characteristic maximum Maximum Wear r maximum Maximum Wear r curve in
(km e h™) point of curve wear/mm wear/mm  ange/mm  wear/mm wear/mm ange/mm EMU dep ot
15 Straight-circle —8.20 1.03 —30.75-19.40 8.00 0.93 —18.40 -34.45
point
Center pointof ~ —6.80 1.31 —30.00-29.75 28.55 277 —13.35-35.05 27
curve
Circle-straight —6.80 1.32 —30.75-22.40 2795 2.20 —14.40-35.05
point
20 Straight-circle —8.20 0.63 —30.00-14.40 28.00 0.73 —11.40-34.95
point
Center pointof ~ —8.30 097 —29.20-1740  30.60 2.84 —7.40-35.05
curve
Circle-straight —-8.15 0.85 —30.00-17.35 28.20 2.19 —7.40-35.05
point
25 Straight-circle —7.25 041 —29.20-10.40 28.10 0.77 —8.40-34.95
point
Center pointof  —6.80 1.05 —33.25-22.40 34.65 312 —14.40-35.10
curve
Circle-straight —8.30 0.94 —30.00-32.00 28.15 2.20 —10.40-35.05
point
30 Straight-circle —7.05 0.46 —29.20-11.40 28.10 0.79 —9.40-34.95 Table 2.
pomt Maximum wear,
Center pointof ~ —6.80 1.00 —29.20-1740  30.65 290 —1040-35.05  position and range at
curve characteristic points of
Circle-straight —8.20 0.89 —-30.00-1740  28.30 222 —10.40-35.05 R350 m small
point radius curve
with an average of —7.18 mm, and the maximum outer rail wear locates in 28.55—
34.65 mm range with an average of 31.11 mm; the maximum inner rail wear at
circle-straight point locates in —8.30-—6.80 mm range with an average of
—7.86 mm, and the maximum outer rail wear locates in 27.95-28.30 mm range with
an average of 28.15 mm. Generally speaking, the maximum inner rail wear locates
at —7.57 mm on average, and the maximum outer rail wear locates at 27.44 mm on
average.
(4) The inner rail wear at the straight-circle point locates in —30.75-19.40 mm range

and the outer rail wear locates in —18.40-34.95 mm range; the inner rail wear at the
center point of the curve locates in —33.25-29.75 mm range and the outer rail wear
locates in —14.40-35.10 mm range; the inner rail wear at the circle-straight point
locates in —30.75-32.00 mm range and the outer rail wear locates in —14.40-
35.05 mm range.

3.3 R250 m small radius curve in Taiyuan South Station
Figure 10 shows the accumulative rail wear when different numbers of vehicles pass through
the center point of 350 m small radius curve in EMU depot of Taiyuan South Station at
30 km h ™. It can be seen from Figure 10 that the wear occurred to the outer rail of the curve
far exceeds that to the inner rail, covering the entire top width on the right of the centerline,
and there are two wear waveforms; rail wear increases as more vehicles/trains pass by.
The wear at the straight-circle point and that at circle-straight point bear similarity.
Figure 11 shows the maximum accumulative rail wear when different numbers of vehicles
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pass through the straight-circle point, center point and circle-straight point of 250 m small
radius curve in EMU depot of Taiyuan South Station at different speeds; Table 3 shows the
maximum rail wear, position and range at the straight-circle point, center point and circle-
straight point of R250 m small radius curve when the number of vehicles/trains passing
through the curve reaches the limit.

Inner rail of curve

Position of

Outer rail of curve
Position of

Speed/ Characteristic maximum Maximum Wear r maximum Maximum Wear range/

kmeh™) pointof curve wear/mm wear/mm  ange/mm  wear/mm  wear/mm mm

15 Straight-circle —6.95 0.99 —30.00-2815 2810 1.07 —17.40-35.00
gzggar pointof  —7.05 1.67 -30.75-1640  34.60 7.40 —15.40-35.05
Eli];cvlz-straight —7.05 147 —30.00-1640  34.55 344 —15.40-35.10

20 gﬁggfght-circle -820 0.63 —29.20-1340 2825 1.07 —12.40-35.00
Eg?tter pointof  —745 1.64 —30.00-1540 3450 490 —11.40-35.10
Elilgvclz-straight —6.90 147 —30.00-1540  34.55 355 —10.40-35.10

25 g(t)gitght-circle —6.90 0.53 —30.00-11.40 2830 1.07 —10.40-35.00
Ezgltter pointof  —7.30 161 —30.75-1540  34.60 723 —11.40-35.05
Elilrljc‘ig-straight —7.00 143 —30.75-1640  34.55 3.56 —11.40-35.10

30 g?;;litght-circle —6.90 0.56 —29.20-1240 2830 1.10 —10.40-35.00
Egﬁltter pointof  —7.25 145 —29.20-1440  34.60 4.86 —9.40-35.10
(C:?rljc‘iti-straight —710 1.36 —30.75-1540 3455 378 —11.40-35.10
poin
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Figure 11.

Cumulative rail wear of

R250 m small
radius curve

Table 3.
Maximum wear,

position and range at
characteristic points of

R250 m small
radius curve
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The following conclusions can be drawn from Figure 11 and Table 3.

(1) When the same number of vehicles passes through R250 m small radius curve, the
wear severity at the outer rail of the curve decreases in the order of the center
point > the circle-straight point > the straight-circle point.

(2) When one million vehicles/trains pass by, the inner rail wear at the straight-circle
point is 0.99 mm with the maximum wear speed of 15 km - h~!and the outer rail wear
is 1.10 mm with the maximum wear speed of 30 km - h™'; inner and outer rail wear at
the center point of the curve is 1.67 mm and 7.40 mm, respectively, with the maximum
wear speed of 15 km - h™; the maximum inner rail wear at the circle-straight point is
1.47 mm with the maximum wear speed of 15 km - h™! and the outer rail wear is
3.78 mm with the maximum wear speed of 30 km - h™1.

(3) As the number of vehicles/trains passing through R250 m curve at different
speeds goes up, the maximum inner rail wear at straight-circle point locates in —
8.35—-—6.90 mm range with an average of —7.44 mm and the maximum
outer rail wear locates near 28.00 mm; the maximum inner rail wear at center
point locates in —7.45——6.80 mm range with an average of —7.08 mm and the
maximum outer rail wear locates in 27.60-34.60 mm range with an average of
34.43 mm,; the maximum inner rail wear at circle-straight point locates in —7.40—
—6.90 mm range with an average of —7.20 mm and the maximum outer rail wear
locates in 27.95-34.55 mm range with an average of 29.56 mm (with the exception
of a few working scenarios). Generally speaking, the maximum inner rail wear
locates at —7.24 mm on average and the maximum outer rail wear locates at
29.56 mm on average.

(4) When vehicles pass through 250 m curve at different speeds, the range of rail wear
decreases with the increase of vehicle speed: The inner rail wear at straight-circle
point locates in —30.00-28.15 mm range and the outer rail wear locates in —17.40—
35.05 mm range; the inner rail wear at center point locates in —30.75-16.40 mm
range and the outer rail wear locates in —15.40-35.10 mm range; the inner rail wear at
circle-straight point locates in —30.75-16.40 mm range and the outer rail wear locates
in —15.40-35.10 mm range.

3.4 R300 m small radius curve in Taiyuan South Station

Figure 12 shows the accumulative rail wear when different numbers of vehicles pass through
the straight-circle point, center point and circle-straight point of R300 m small radius
curve in EMU depot of Taiyuan South Station at 30 km h™. It can be seen from Figure 12 that
the maximum inner and outer rail wears mainly locate in 26—35 mm range, which has entered
the connecting arc between rail top and rail side; there are two wear waveforms on inner and
outer rails; rail wear increases as more vehicles/trains pass by.

Figure 13 shows the maximum accumulative rail wear when different numbers of vehicles
pass through the straight-circle point, center point and circle-straight point of R300 m small
radius curve in EMU depot of Taiyuan South Station at different speeds; Table 4 shows the
maximum rail wear, position and range at the straight-circle point, center point and circle-
straight point of R300 m small radius curve when the number of vehicles/trains passing
through the curve reaches the limit.

The following conclusions can be drawn from Figure 13 and Table 4.

(1) When the same number of vehicles passes through R300 m small radius curve, the
wear severity at the outer rail of the curve decreases in the order of the center
point > circle-straight point > the straight-circle point.
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Figure 13.

Accumulative rail wear

of R300 m small
radius curve

Accumulative wear /mm
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Speed/
(km h— Characteristic

Inner rail of curve

Position of
maximum Maximum Wear range/

maximum

Outer rail of curve
Position of

wear/mm  Maximum Wear range/

1) point of curve  wear/mm  wear/mm mm mm wear/mm mm
15 Straight-circle 28.15 217 —15.40-35.05 -7.35 0.90 —34.95-15.40
point
Center point of ~ 26.15 1.61 —20.40-34.15  —34.55 357 —35.05-13.40
curve
Circle-straight 26.30 152 —740-3375 2820 244 —35.05-13.40
point
20 Straight-circle 28.30 2.23 —11.40-3505  —28.00 0.94 —34.95-15.40
point
Center point of 26.00 1.33 —1740-33.75  —34.60 3.60 —35.10-13.40
curve
Circle-straight 26.15 142 —1540-33.75  —2850 240 —35.05-10.40
point
25 Straight-circle 28.35 227 —14.40-3505  —28.00 0.95 —34.95-15.40
point
Center point of 25.90 1.31 —1740-3325  —34.55 3.84 —35.05-12.40
curve
Circle-straight 26.20 1.37 —1540-33.75  —2840 240 —35.05-9.35
point
Table 4. 30 Straightcirde 2830 220 —1335-3505 —2800 099 —3495-1440
Maximum wear, pomt
position and range at Center point of ~ 25.90 126 —1640-3325 —3455 370 —3505-11.35
characteristic points of curve
R300 m small Circle-straight 26.15 1.33 —14.40-33.75  —28.80 241 —35.05-8.40
radius curve point
(2) When one million vehicles/trains pass by, the inner and outer rail wear at the straight-

circle point is 2.29 and 0.99 mm, respectively, with the maximum wear speed of 30 km
- h™; inner rail wear at the center point of the curve is 1.61 mm with the maximum

wear speed of 15km - h™!
speed of 25 km - h™*

and the outer rail wear is 3.84 m with the maximum wear
; the inner and outer rail wear at the circle-straight point is 1.52

and 2.44 mm, respectively, with the maximum wear speed of 15 km - h™%



®
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As the number of vehicles/trains passing through 300 m curve at different speeds Rail wear
goes up, the maximum inner rail wear at straight-circle point locates in 27.95— of small radius
28.35 mm range and the maximum outer rail wear locates in —28.10——7.25 mm curve in
range; the maximum inner rail wear at center point locates in 25.90-26.80 mm range

and the maximum outer rail wear locates in —34.60——28.05 mm range; the maximum EMU depot
inner rail wear at circle-straight point locates in 26.15-27.50 mm range and the

maximum outer rail wear locates in —28.80——27.95 mm range. Generally speaking, 33
the maximum inner rail wear locates at 27.07 mm on average and the maximum outer
rail wear locates at —25.07 mm on average.

When vehicles pass through R300 m curve at different speeds, the range of rail wear
decreases with the increase of vehicle speed: The inner rail wear at straight-circle
point locates in —11.40~35.05 mm range and the outer rail wear locates in —34.9523—
15.3977 mm range; the inner rail wear at center point locates in —20.3977-34.1523 mm
range and the outer rail wear locates in —35.1023-13.3977 mm range; the inner rail
wear at circle-straight point locates in —17.3977-33.7523 mm range and the outer rail
wear locates in —35.0523-13.3977 mm range.

3.5 Influence of rail wear on dynamics characteristics

Rail wear increases as more trains run by, altering the wheel-rail contact relation. In other
words, wheel-rail contact changes from initial elliptical contact to multipoint non-elliptical
contact, thus changing the dynamics performance of the vehicle. For the analysis the change
of dynamics performance with the increase of rail wear, the paper looks into the influence of
rail wear on dynamics characteristics of the vehicle in three working conditions of the rail
(namely, original profile, profile as 500,000 vehicles/trains pass by and that as one million
vehicles/trains pass by) on the premise that the operation speed is set at 30 km-h™%.

Under the presumption that the profiles at both ends of line L are ¢ and 7, respectively, the
profile at any point x within the range of Line L is generated by linear transition of / and 7, as
shown in Figure 14.

Figures 15-18 show the change of derailment coefficient, reduction rate of wheel load,
vertical and lateral wheel-rail force at No. 1 wheelset position of the train-track system in
EMU depots of Guangzhou East Station and Taiyuan South Station.

It can be seen from Figures 15-18 that the influence of rail wear on lateral wheel-rail force
and derailment coefficient is minor when the train enters the first curve and its straight
section, but such influence is amplified with greater difference noticed when the train passes
through the first curve; rail wear has no significant effect on vertical wheel-rail force and
reduction rate of wheel load; when the number of passing vehicles reaches 1 million, the
derailment coefficient of the outer rail of the line in EMU depot of Guangzhou East Station will
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exceed 0.8, the limit specified in the specification for dynamic inspection. In this case, the train

shall

pass through the line at decelerated speed to prevent derailment; the derailment

coefficient is set at 0.7 on the line of EMU depot of Taiyuan South Station.

4. Conclusion

@

)

®)

©)

©)

The wear severity at the straight-circle point, center point and circle-straight point of
small radius curve with no transition curve follows the order of the center point > the
circle-straight point > the straight-circle point. Accumulative wear deteriorates as
more trains run by.

In the case of small radius curve, uneven wear tends to be noticed at both sides of the
rail, while two wear formworks, a big one and a small one, are generally obtained at
both sides of the connecting points of arcs with different radii on the top of the rail on
side one or sides two, in which the small radius arc of the rail corresponds to the large
waveform, while the large radius arc, the small waveform.

When the number of passing vehicles/trains reaches 1 million, the maximum inner
rail wears of R200 m, 250 m, R300 m and 350 m curves locates at 7.00, —7.05, 28.30
and —6.80 mm, respectively, with the corresponding maximum wears of 1.88, 1.67,
2.29 and 1.32 mm, respectively. The maximum outer rail wears are found at —34.65,
34.60, —34.55 and 34.65 mm, respectively, with maximum wears of 10.11, 7.40, 3.84
and 3.12 mm, respectively.

The severity of the accumulative wear at the straight-circle point, center point and
circle-straight point of the curve with different radii declines in the order of 200 m,
R250 m, R300 m and R350 m curves.

When vehicles/trains pass through small radius curves at different speeds, the range of
rail wear decreases with the increase of speed; when the number of passing vehicles
reaches 1 million, the inner rail wears of R200 m, 250 m, £300 m and B350 m curves are
found in —23.40-32.15, —30.75-28.15, —20.40-34.15 and —33.25-32.00 mm ranges,
respectively, and the outer rail wears locate in —35.05-17.40, —17.40-35.10, —35.10—
15.40 and —18.40-35.10 mm ranges, respectively, with the straight-circle point recording
the largest range of wear, followed by the center point and the circle-straight point.

The dynamics performance of the vehicle/train increases with the development of rail
wear, but it exerts only limited impact overall. The wear of the curve line mainly affects
lateral wheel-rail force and derailment coefficient. When the number of passing vehicles
reaches 1 million, the derailment coefficient caused by rail wear in EMU depot of
Guangzhou East Station exceeds 0.8, the limit specified in the specification. The
coefficient stands at 0.7 on the line of Taiyuan South Railway Station. Therefore, when
the rail is worn to a certain extent, the vehicle shall pass through the line in EMU depot
of Guangzhou East Station at decelerated speed to prevent derailment.
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