Search results

1 – 10 of 94
Article
Publication date: 14 July 2021

Sivaraj Chinnasamy, Vignesh E. and Mikhail Sheremet

The study aims to investigate magnetohydrodynamics thermal convection energy transference and entropy production in an open chamber saturated with ferrofluid having an isothermal…

Abstract

Purpose

The study aims to investigate magnetohydrodynamics thermal convection energy transference and entropy production in an open chamber saturated with ferrofluid having an isothermal solid block.

Design/methodology/approach

Analysis of thermal convection phenomenon was performed for an open chamber saturated with a nanofluid having an isothermal solid unit placed inside the cavity with various aspect ratios. The left border temperature is kept at Tc. An external cooled nanofluid of fixed temperature Tc penetrates into the domain from the right open border. The nanofluid circulation is Newtonian, incompressible, and laminar. The uniform magnetic field of strength B at the tilted angle of γ is applied. The finite volume technique is used to work out the non-linear equations of liquid motion and energy transport. For Rayleigh number (Ra=1e+7), numerical simulations were executed for varying the solid volume fractions of the nanofluid (ϕ = 0.01–0.04), the aspect ratios of a solid body (As = 0.25–4), the Hartmann number (Ha = 0–100), the magnetic influence inclination angle (γ = 0–π/2) and the non-dimensional temperature drop (Ω = 0.001–0.1) on the liquid motion, heat transference and entropy production.

Findings

Numerical outcomes are demonstrated by using isolines of temperature and stream function, profiles of mean Nusselt number and entropy generations. The results indicate that the entropy generation rate and mean Nu can be decreased with an increase in Ha. The inner solid block of As = 0.25 reflects the maximum heat transfer rate in comparison with other considered blocks. The addition of nano-sized particles results in a growth of energy transport and mean entropy generations.

Originality/value

An efficient computational technique has been developed to solve natural convection problem for an open chamber. The originality of this research is to scrutinize the convective transport and entropy production in an open domain with inner body. The outcomes would benefit scientists and engineers to become familiar with the investigation of convective energy transference and entropy generation in open chambers with inner bodies, and the way to predict the energy transference strength in the advanced engineering systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 June 2021

Sonali Shankar, Sushil Punia and P. Vigneswara Ilavarasan

Container throughput forecasting plays a pivotal role in strategic, tactical and operational level decision-making. The determination and analysis of the influencing factors of…

Abstract

Purpose

Container throughput forecasting plays a pivotal role in strategic, tactical and operational level decision-making. The determination and analysis of the influencing factors of container throughput are observed to enhance the predicting accuracy. Therefore, for effective port planning and management, this study employs a deep learning-based method to forecast the container throughput while considering the influence of economic, environmental and social factors on throughput forecasting.

Design/methodology/approach

A novel multivariate container throughput forecasting method is proposed using long short-term memory network (LSTM). The external factors influencing container throughput, delineated using triple bottom line, are considered as an input to the forecasting method. The principal component analysis (PCA) is employed to reduce the redundancy of the input variables. The container throughput data of the Port of Los Angeles (PLA) is considered for empirical analysis. The forecasting accuracy of the proposed method is measured via an error matrix. The accuracy of the results is further substantiated by the Diebold-Mariano statistical test.

Findings

The result of the proposed method is benchmarked with vector autoregression (VAR), autoregressive integrated moving average (ARIMAX) and LSTM. It is observed that the proposed method outperforms other counterpart methods. Though PCA was not an integral part of the forecasting process, it facilitated the prediction by means of “less data, more accuracy.”

Originality/value

A novel deep learning-based forecasting method is proposed to predict container throughput using a hybridized autoregressive integrated moving average with external factors model and long short-term memory network (ARIMAX-LSTM).

Details

Industrial Management & Data Systems, vol. 121 no. 10
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 26 September 2023

Thameem Hayath Basha, Sivaraj Ramachandran and Bongsoo Jang

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes…

Abstract

Purpose

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes requires a deep understanding of thermophysical behavior, rheology and complex chemical reactions. The manufacturing flow processes for these coatings are intricate and involve heat and mass transfer phenomena. Magnetic nanoparticles are being used to create intelligent coatings that can be externally manipulated, making them highly desirable. In this study, a Keller box calculation is used to investigate the flow of a coating nanofluid containing a viscoelastic polymer over a circular cylinder.

Design/methodology/approach

The rheology of the coating polymer nanofluid is described using the viscoelastic model, while the effects of nanoscale are accounted for by using Buongiorno’s two-component model. The nonlinear PDEs are transformed into dimensionless PDEs via a nonsimilar transformation. The dimensionless PDEs are then solved using the Keller box method.

Findings

The transport phenomena are analyzed through a comprehensive parametric study that investigates the effects of various emerging parameters, including thermal radiation, Biot number, Eckert number, Brownian motion, magnetic field and thermophoresis. The results of the numerical analysis, such as the physical variables and flow field, are presented graphically. The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as fluid parameter increases. An increase in mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid.

Practical implications

Intelligent materials rely heavily on the critical characteristic of viscoelasticity, which displays both viscous and elastic effects. Viscoelastic models provide a comprehensive framework for capturing a range of polymeric characteristics, such as stress relaxation, retardation, stretching and molecular reorientation. Consequently, they are a valuable tool in smart coating technologies, as well as in various applications like supercapacitor electrodes, solar collector receivers and power generation. This study has practical applications in the field of coating engineering components that use smart magnetic nanofluids. The results of this research can be used to analyze the dimensions of velocity profiles, heat and mass transfer, which are important factors in coating engineering. The study is a valuable contribution to the literature because it takes into account Joule heating, nonlinear convection and viscous dissipation effects, which have a significant impact on the thermofluid transport characteristics of the coating.

Originality/value

The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as the fluid parameter increases. An increase in the mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid. Increasing the strength of the magnetic field promotes an increase in the density of the streamlines. An increase in the mixed convection parameter results in a decrease in the isotherms and isoconcentration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2023

Oktay Çiçek, A. Filiz Baytaş and A. Cihat Baytaş

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow…

Abstract

Purpose

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow in a lid-driven square enclosure with heat generation in the presence of a porous layer on inner surfaces, considering local thermal non-equilibrium (LTNE) approach and the non-Darcy flow model.

Design/methodology/approach

The dimensionless governing equations for hybrid nanofluid and solid phases are solved by applying the finite volume method and semi-implicit method for pressure-linked equations algorithm.

Findings

The roles of the internal heat generation in the porous layer, LTNE model and nanoparticles volume fraction on mixed convection phenomenon and entropy generation are introduced for lid-driven cavity hybrid nanofluid flow. Based on the investigation of entropy generation and heat transfer, the minimum total entropy generation and average Nusselt numbers are found at 1 ≤ Ri ≤ 10 where the effect of the forced and free convection flow directions being opposite each other is very significant. When considering various nanoparticle volume fractions, it becomes evident that the minimum entropy generation occurs in the case of φ = 0.1%. The outcomes of LTNE number reveal the operating parameters in which thermal equilibrium occurs between hybrid nanofluid and solid phases.

Originality/value

The analysis of entropy generation under various shear and buoyancy forces plays a significant role in the suitable thermal design and optimization of mixed convective heat transfer applications. This research significantly contributes to the optimization of design and the advancement of innovative solutions across diverse engineering disciplines, such as packed-bed thermal energy storage and thermal insulation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 December 2023

Priyadharsini Sivaraj and Sivaraj Chinnasamy

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both…

Abstract

Purpose

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both isothermal and capable of producing heat. A time-dependent non-linear partial differential equation is used to represent the transfer of heat through a solid body. The current study’s objective is to investigate the key properties of nanoparticles, external forces and particular attention paid to the impact of hybrid nanoparticles on entropy formation. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates. Hybrid nanofluid has been proven to have useful qualities, making it an attractive coolant for an electrical device. The findings would help scientists and engineers better understand how to analyse convective heat transmission and how to forecast better heat transfer rates in cutting-edge technological systems used in industries such as heat transportation, power generation, chemical production and passive cooling systems for electronic devices.

Design/methodology/approach

Thermal transmission and entropy generation of hybrid nanofluid are analysed within the enclosure. The domain of interest is a square chamber of size L, including a square solid block. The solid body is considered to be isothermal and generating heat. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the SIMPLE algorithm on a uniformly staggered mesh. QUICK and central difference schemes were used to handle convective and diffusive elements. In-house code is developed using FORTRAN programming to visualize the isotherms, streamlines, heatlines and entropy contours, which are handled by Tecplot software. The influence of nanoparticles volume fraction, heat generation factor, external magnetic forces and an irreversibility ratio on energy transport and flow patterns is examined.

Findings

The results show that the hybrid nanoparticles concentration augments the thermal transmission and the entropy production increases also while the augmentation of temperature difference results in a diminution of entropy production. Finally, magnetic force has the significant impact on heat transfer, isotherms, streamlines and entropy. It has been observed that the external magnetic force plays a good role in thermal regulations.

Research limitations/implications

Hybrid nanofluid is a desirable coolant for an electrical device. Various nanoparticles and their combinations can be analysed. Ferro-copper hybrid nanofluid considered with the help of prevailing literature review. The research would benefit scientists and engineers by improving their comprehension of how to analyses convective heat transmission and forecast more accurate heat transfer rates in various fields.

Practical implications

Due to its helpful characteristics, ferrous-copper hybrid nanofluid is a desirable coolant for an electrical device. The research would benefit scientists and engineers by improving their comprehension of how to analyse convective heat transmission and forecast more accurate heat transfer rates in cutting-edge technological systems used in sectors like thermal transportation, cooling systems for electronic devices, etc.

Social implications

Entropy generation is used for an evaluation of the system’s performance, which is an indicator of optimal design. Hence, in recent times, it does a good engineering sense to draw attention to irreversibility under magnetic force, and it has an indispensable impact on investigation of electronic devices.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyse convective energy transport and entropy generation in a chamber with internal block, which is capable of maintaining heat and producing heat. Effects of irreversibility ratio are scrutinized for the first time. Analysis of convective heat transfer and entropy production in an enclosure with internal isothermal/heat generating blocks gives the way to predict enhanced heat transfer rate and avoid the failure of advanced technical systems in industrial sectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 December 2018

Siddharth Kulkarni, David John Edwards, Craig Chapman, M. Reza Hosseini and De-Graft Owusu-Manu

Road passenger transportation faces a global challenge of reducing environmental pollution and greenhouse gas emissions because of the vehicle weight increases needed to enhance…

Abstract

Purpose

Road passenger transportation faces a global challenge of reducing environmental pollution and greenhouse gas emissions because of the vehicle weight increases needed to enhance passenger safety and comfort. This paper aims to present a preliminary mechanical design evaluation of the Wikispeed Car (with a focus on body bending, body torsion and body crash) to assess light-weighting implications and improve the vehicle’s environmental performance without compromising safety.

Design/methodology/approach

For this research, finite element analysis (FEA) was performed to examine the Wikispeed chassis for light-weighting opportunities in three key aspects of the vehicle’s design, namely, for body bending the rockers (or longitudinal tubes), for body torsion (again on the rockers but also the chassis as a whole) and for crash safety – on the frontal crash structure. A two-phase approach was adopted, namely, in phase one, a 3D CAD geometry was generated and in phase, two FEA was generated. The combination of analysis results was used to develop the virtual model using FEA tools, and the model was updated based on the correlation process.

Findings

The research revealed that changing the specified material Aluminium Alloy 6061-T651 to Magnesium EN-MB10020 allows vehicle mass to be reduced by an estimated 110 kg, thus producing a concomitant 10 per cent improvement in fuel economy. The initial results imply that the current beam design made from magnesium would perform worst during a crash as the force required to buckle the beam is the lowest (between 95.2 kN and 134 kN). Steel has the largest bandwidth of force required for buckling and also requires the largest force for buckling (between 317 kN and 540 kN).

Originality/value

This is the first study of its kind to compare and contrast between material substitution and its impact upon Wikispeed car safety and performance.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 July 2023

Vimal Kumar, Elizabeth A. Cudney, Ankesh Mittal, Ajay Jha, Neeraj Yadav and Ali Al Owad

New product development (NPD) is necessary for business sustenance and customer satisfaction. Six Sigma and Design for Lean Six Sigma (DLSS) efficiently employ the repetitive…

Abstract

Purpose

New product development (NPD) is necessary for business sustenance and customer satisfaction. Six Sigma and Design for Lean Six Sigma (DLSS) efficiently employ the repetitive stages for NPD, leading to quality performance and profitability. This study aims to map the quality performance through NPD attributes through the Lean methodology.

Design/methodology/approach

The data on NPD were collected from 267 respondents from manufacturing companies to map the relationship between Six Sigma and DLSS for NPD. Confirmatory factor analysis was employed to confirm model fit, while structural equation modeling was employed to analyze the empirical data for framework testing. The study included nine variables and fourteen hypotheses identified from the literature.

Findings

The statistical results of this study show that NPD attributes such as innovation, marketing, organization, customer, product and technology positively influence the Lean Six Sigma structured improvement process (LSSSIP) and DLSS. Moreover, integrating these attributes in Lean planning enhance quality performance. This empirical investigation's findings indicate that ten of the 14 hypotheses were supported, giving the study a strong foundation.

Research limitations/implications

The data collection was limited to northern India; therefore, the results may not be generalizable to other areas of the world.

Practical implications

NPD involves handling technical issues and factors such as cost, operational bottlenecks, economic changes, competitors' strategy and company policy. This study helps understand the various NPD parameters and their relationship to Lean, which enables an effective NPD implementation strategy.

Originality/value

The current philosophy of NPD calls for a concurrent engineering approach; therefore, the entire organization must be part of this process. This study uses the holistic framework by optimizing NPD with Lean Six Sigma (LSS) principles. The study is unique in that, to date, research does not integrate NPD attributes with the objectives of LSS to develop an efficient NPD implementation strategy.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 13 August 2020

Shreeranga Bhat, E.V. Gijo, Anil Melwyn Rego and Vinayambika S. Bhat

The aim of the article is to ascertain the challenges, lessons learned and managerial implications in the deployment of Lean Six Sigma (LSS) competitiveness to micro, small and…

1243

Abstract

Purpose

The aim of the article is to ascertain the challenges, lessons learned and managerial implications in the deployment of Lean Six Sigma (LSS) competitiveness to micro, small and medium Enterprises (MSME) in India and to establish doctrines to strengthen the initiatives of the government.

Design/methodology/approach

The research adopts the Action Research methodology to develop a case study, which is carried out in the printing industry in a Tier III city using the LSS DMAIC (Define-Measure-Analyze-Improve-Control) approach. It utilizes LSS tools to deploy the strategy and to unearth the challenges and success factors in improving the printing process of a specific batch of a product.

Findings

The root cause for the critical to quality (CTQ) characteristic, turn-around-time (TAT) is determined and the solutions are deployed through the scientifically proven data-based approach. As a result of this study, the TAT reduced from an average of 1541.2–1303.36 min, which in turn, improved the sigma level from 0.55 to 2.96, a noteworthy triumph for this MSME. The company realizes an annual savings of USD 12,000 per year due to the success of this project. Top Management Leadership, Data-Based Validation, Technical Know-how and Industrial Engineering Knowledge Base are identified as critical success factors (CSFs), while profitability and on-time delivery are the key performance indicators (KPIs) for the MSME. Eventually, the lessons learned and implications indicate that LSS competitiveness can be treated as quality management standards (QMS) and quality tools and techniques (QTT) to ensure competitive advantage, sustainable green practices and growth.

Research limitations/implications

Even though the findings and recommendations of this research are based on a single case study, it is worth noting that the case study is executed in a Tier III city along with novice users of LSS tools and techniques. This indicates the applicability of LSS in MSME and thus, the modality adopted can be further refined to suit the socio-cultural aspects of India.

Originality/value

This article illustrates the deployment of LSS from the perspective of novice users, to assist MSME and policymakers to reinforce competitiveness through LSS. Moreover, the government can initiate a scheme in line with LSS competitiveness to complement the existing schemes based on the findings of the case study.

Details

The TQM Journal, vol. 33 no. 2
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 1 June 2023

Mustafa Turkyilmazoglu

The onset of Darcy–Benard convection in a fluid-saturated porous layer within channeled walls can be through either the convectively amplified perturbations or absolutely unstable…

Abstract

Purpose

The onset of Darcy–Benard convection in a fluid-saturated porous layer within channeled walls can be through either the convectively amplified perturbations or absolutely unstable modes. The convective type route to formation of cellular forms has received much more interest in the literature than the absolute mode. This paper aims to explore the absolute instability mechanism on triggering the Benard convection in the presence of a uniform magnetic field acting perpendicular to the channel walls.

Design/methodology/approach

Pursuing a completely theoretical linear stability approach, the locus of wavenumbers and critical Rayleigh numbers with respect to varying Peclet numbers leading to zero complex group velocity, and hence the absolute instability onset, is formulated in closed form. The formulae also incorporate the influence of fluid movement through the porous layer.

Findings

Wanenumbers are found to be increasing in magnitude under the effect of the magnetic field. Although the magnetic field expectedly behaves in favor of stabilizing the convection through both convective and absolute instabilities by pushing the threshold value of Rayleigh number to higher values, a peculiarity exists in such a manner that the stabilizing effect of magnetic field can no longer compete against the absolute instability mechanism within the magnetized field after some critical location possessing negative part of the wavenumber.

Originality/value

The significant outcome is attributed to the exchange of instabilities as far as the absolute instability mechanism is concerned. Magnetic field is always stabilizing and no such trend is observed regarding the convective type instability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 June 2023

Sandeep Kumar, Vikas Swarnakar, Rakesh Kumar Phanden, Dinesh Khanduja and Ayon Chakraborty

The purpose of this study is to present the systematic literature review (SLR) on Lean Six Sigma (LSS) by exploring the state of the art on growth of literature on LSS within the…

Abstract

Purpose

The purpose of this study is to present the systematic literature review (SLR) on Lean Six Sigma (LSS) by exploring the state of the art on growth of literature on LSS within the manufacturing sector, critical factors to implement LSS, the role of LSS in the manufacturing sector from an implementation and sustainability viewpoint and Industry 4.0 viewpoints while highlighting the research gaps.

Design/methodology/approach

An SLR of 2,876 published articles extracted from Scopus, WoS, Emerald Insight, IEEE Xplore, Taylor & Francis, Springer and Inderscience databases was carried out following the protocol of systematic review. In total, 154 articles published in different journals over the past 10 years were selected for quantitative and qualitative analysis which revealed a number of research gaps.

Findings

The findings of the SLR revealed the growth of literature on LSS within the manufacturing sector. The review also highlighted the most cited critical success factors, critical failure factors, performance indicators and associated tools and techniques applied during LSS implementation. The review also focused on studies related to LSS and sustainability viewpoint and LSS and Industry 4.0 viewpoints.

Practical implications

The findings of this SLR can help senior managers, practitioners and researchers to understand the current developments and future requirements to adopt LSS in manufacturing sectors from sustainability and Industry 4.0 viewpoints.

Originality/value

Academic publications in the context of the role of LSS in various research streams are sparse, and to the best of the authors’ knowledge, this paper is one of the first SLRs which explore current developments and future requirements to implement LSS from sustainability and Industry 4.0 perspective.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

1 – 10 of 94