Search results

1 – 10 of 13
Article
Publication date: 26 November 2021

Vahid Heydari, Zaker Bahreini and Majid Abdouss

The harsh environment of space, especially radiation of direct solar rays, can potentially raise the temperature of the spacecraft to harmful levels. Thermal control coatings…

Abstract

Purpose

The harsh environment of space, especially radiation of direct solar rays, can potentially raise the temperature of the spacecraft to harmful levels. Thermal control coatings (TCCs) fix the thermal condition of the spacecraft acceptable for its components. This is possible by diffusely reflecting all effective ultraviolet (UV), visible (VIS) and near infrared (IR) (NIR) wavelengths of solar radiation and emmition of IR energy. The most commonly used TCCs have used ZnO as a pigment, but absorption of the UV light by ZnO pigment can change the ideal condition of these TCCs. The aim of his study is the using the porous ZnO particles as pigment to prevent the UV absorption.

Design/methodology/approach

To enhance the efficiency of these coatings, in the present study, nano-porous zinc oxide particles were synthesized and used as pigments for white TCCs.

Findings

The results revealed that the proposed TCC (TPZ), Thermal control coating with porous ZnO had better reflection (scattering) and emittance properties in comparison with the coating using ZnO as a pigment (TZ coating); so this coating had a solar absorptance value equal to 0.141, whereas this value for TZ was 0.150. Furthermore, TPZ showed higher thermal emittance (0.937) in comparison with TZ (0.9). These changes were because of the improvement in the refractive index, shape and surface area of the pigments. The general trend of the scattering coefficients for the prepared coating, as calculated from the Kubelka–Munk equation, showed that scattering was more efficient in the UV region, as compared with the TCC containing ZnO pigments.

Originality/value

This type of pigment for the first time is evaluated in TCCs.

Details

Pigment & Resin Technology, vol. 52 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 September 2017

Zaker Bahreini, Vahid Heydari and Zahra Namdari

Mechanical and chemical properties of acrylic-melamine automotive clear coat in the presence of different percentages of well dispersed nano-layered sodium montmorillonite…

Abstract

Purpose

Mechanical and chemical properties of acrylic-melamine automotive clear coat in the presence of different percentages of well dispersed nano-layered sodium montmorillonite (Na-MMT) silicate particles were investigated. For this purpose, prepared dry clear coat film samples were subjected to the entire standard test series, usually carried out in automotive coating industry.

Design/methodology/approach

Effects of adding different percentages of nano-layered silicate on mechanical and chemical properties of acrylic-melamine automotive clear coat were investigated. To increase the compatibility of nanoclays with polymer matrix of clear coat, the surface of nanoclays was modified by benzalkonium chloride as a cationic surfactant. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization and comparison between clays before and after modification, and also after dispersion in coating. Prepared dry clear coat film samples subjected to the test series are usually carried out in automotive coating industry.

Findings

The results indicated that incorporation of 1 and 2 Wt.% of nano-layered silicate caused desired improvement in chemical and physical properties of the acrylic-melamine clear coat. Increasing the percentage of nanoclay to over 2 Wt.% caused damage in some properties such as hardness, cupping and gloss.

Research limitations/implications

All materials and methods were used in this research are industrial grade. Therefore, the introduced modified clear coat sample has potential for commercial production as an automotive clear coat.

Originality/value

As far as it was searched in the literature, effects of adding nanoclay particles on mechanical and physical properties of different clear coats, such as epoxy clear coat, have been investigated in a few researches, but in this research, common and special tests which are necessary in automotive coating industry have been ignored. In the present study for the first time, acrylic-melamine clear coat was subjected to modification using nano-clay, and also, the most common industrial test methods were used for investigation of mechanical and chemical properties.

Details

Pigment & Resin Technology, vol. 46 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 January 2016

Alireza Khataee, Leila Moradkhannejhad, Vahid Heydari, Behrouz Vahid and Sang Woo Joo

This paper aims to study the Improvements in self-cleaning property of the white acrylic water-based paint by addition of different percentages of three commercially available…

Abstract

Purpose

This paper aims to study the Improvements in self-cleaning property of the white acrylic water-based paint by addition of different percentages of three commercially available titanium dioxide (TiO2) nanoparticles as additives. Then, due to the risk of destruction of polymeric materials in the presence of nanoparticles, degradation of dry paint film samples was investigated for 15 days using two important chalking and yellowing factors. Finally, the TiO2-modified paint sample with the best performance and optimum percentage of TiO2 nanoparticles that produced desired self-cleaning and dry film properties was introduced.

Design/methodology/approach

Self-cleaning and dry film properties of white acrylic water-based paint were investigated by addition of three various types of commercial available TiO2 nanoparticles (SSP-25, STA-100 and KA-100). X-ray diffraction, transmission electron microscopy and Brunauer–Emmett–Teller were used for characterization of TiO2 samples. Colorimetric tests in decolourization of C.I. Basic Red 46 (BR46) were used for determination of self-cleaning properties of TiO2-modified paints in comparison with unmodified paint sample. Also, paints defects such as chalking and yellowing were tested along two weeks.

Findings

The results indicated that, in all types of TiO2 nanoparticles, by increasing the amount of TiO2 in modified paint, self-cleaning property of the samples was enhanced. The paint containing SSP-25 indicated better self-cleaning properties than others due to its larger surface area. However, its usage above 3.5 weight per cent caused yellowing and chalking defects in dried paint film.

Practical implications

In this research, TiO2-modified paint sample with the best performance in both self-cleaning and mechanical properties was selected among the nine sets of prepared paint samples. All the materials used in this research such as acrylic resin and three types of TiO2 nanoparticles are of industrial grade. Therefore, the introduced TiO2-modified paint sample has the potential for the commercial production as a building exterior paint.

Originality/value

In the present study, an attempt at introducing a self-cleaning paint sample with acceptable mechanical properties using three types of commercially available TiO2 nanoparticles as additives and industrial grade of acrylic resin which is the most commonly used water-based resin in building paints, as binder. As far as it was searched in the literatures, the parallel study of the self-cleaning and mechanical properties of paints has not been reported as noteworthy. Self-cleaning property of the acrylic water-based paint samples was investigated by adding three types of the commercially available TiO2 nanoparticles. Also considering the possible detrimental effects of TiO2 nanoparticles on polymeric materials and consequently on physical properties of the paint, chalking and yellowing factors in dried paint samples were evaluated.

Details

Pigment & Resin Technology, vol. 45 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 March 2016

Zaker Bahreini, Vahid Heydari, Ali N. Hekmat, Minoo Taheri, Behrouz Vahid and Leila Moradkhannejhad

This paper aims to introduce two methods for immobilisation of TiO2 nanoparticles on a glass plate by means of silicon resin as a medium. Then, to ensure the effectiveness of…

Abstract

Purpose

This paper aims to introduce two methods for immobilisation of TiO2 nanoparticles on a glass plate by means of silicon resin as a medium. Then, to ensure the effectiveness of these stabilisation methods, the photocatalytic degradation and mineralisation of the dye C.I. Reactive Blue 21 (RB21), as a model organic pollutant, were compared using these immobilised systems and the suspended one utilizing UV and sunlight irradiations individually.

Design/methodology/approach

TiO2 nanoparticles were supported onto a glass support by silicon resin as an adhesion agent by spraying of TiO2 nanoparticles on the resin surface, which covered the glass plate or brushing the mixture of TiO2 and the resin onto the glass. The characteristics of the applied nano-TiO2 were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Brunauer

Emmett–Teller. Photocatalytic degradation and mineralisation of C.I. Reactive Blue 21 (RB21) by two immobilised systems were compared with suspended system in a batch mode under UV and sunlight irradiations after 2 h of treatment.

Findings

The results showed that these immobilised modes had efficiencies, including 82-87 per cent degradation of RB21 and 52-58 per cent decrease in chemical oxygen demand (COD) for the operational time of 120 min, comparable to that of the suspended mode (91 per cent degradation of RB21 and, consequently, COD is decreased by 65 per cent). Comparison between photocatalytic efficiencies of two immobilised systems revealed that coating by spraying method performed better than brushing one due to more available surface area of TiO2. Finally, the results obtained from the mentioned supported systems under sunlight indicated the efficiencies about 87 to 89 per cent in comparison of the suspension system regardless of the reaction time enhancement up to 15 h compared to the UV irradiation.

Research limitations/implications

In this research, the fixation of TiO2 nanoparticles on a substrate such as normal glass by an easy, inexpensive, durable, repairable and repeatable technique for wastewater treatment was introduced. Due to the simplicity and cheapness of these stabilisation methods and as these stabilisation methods are applicable on other substrates such as concrete, ceramics, etc., you can use these methods in major scales for purification of contaminated water, for example for stabilisation of TiO2 nanoparticles on wall pool utilized for water purification can be used.

Originality/value

Two introduced immobilisation methods in this study are novel. The photocatalytic efficiency of these immobilised systems in degradation of water contaminants was investigated by using these systems in degradation and mineralisation of the dye C.I. Reactive Blue 21 (RB21), as a model organic pollutant compared with same TiO2 nanoparticles in an aqueous suspension system under UV light. Furthermore, this paper investigated replacing of inexpensive sources of UV light instead of UV lamps, and then the same photocatalytic reactions were carried out under sunlight as a UV source and degradation efficiencies by two UV sources were compared.

Details

Pigment & Resin Technology, vol. 45 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Book part
Publication date: 28 June 2023

Elaheh Heydari, Mojtaba Rezaei, Marco Pironti and Federico Chmet

Despite the undoubted role of family firms in the economy, some main factors challenge their attempts for business internationalisation. These drivers are varied from…

Abstract

Despite the undoubted role of family firms in the economy, some main factors challenge their attempts for business internationalisation. These drivers are varied from organisational and environmental to individual attributes. This study tries to recognise and explore the impacts of the personality traits of managers, founders, and owners of family firms in their business internationalisation. The study used a questionnaire to collect data from a sample of 204 managers, founders, and owners of small- and medium-sized family firms to consider the relationship between personality traits: conscientiousness, openness, extroversion, neuroticism and agreeableness, and business internationalisation (BI). The hypotheses were analysed through structural equation modelling (SEM) using Lisrel. The results suggest different impacts of personality traits on facilitating the internationalisation process. According to the finding, extroversion and openness have a significant positive and agreeableness and conscientiousness have positive, less significant impacts on the tendency towards business internationalisation. Moreover, neuroticism impacts negatively significantly. Therefore, managers, founders, and owners of small- and medium-sized family firms who are extrovert, open, and non-neuroticism (tranquil) are more encaustic to making strategic decisions for extending their business to international markets.

Details

Decision-Making in International Entrepreneurship: Unveiling Cognitive Implications Towards Entrepreneurial Internationalisation
Type: Book
ISBN: 978-1-80382-234-1

Keywords

Content available
Book part
Publication date: 28 June 2023

Abstract

Details

Decision-Making in International Entrepreneurship: Unveiling Cognitive Implications Towards Entrepreneurial Internationalisation
Type: Book
ISBN: 978-1-80382-234-1

Article
Publication date: 19 April 2022

D. Divya, Bhasi Marath and M.B. Santosh Kumar

This study aims to bring awareness to the developing of fault detection systems using the data collected from sensor devices/physical devices of various systems for predictive…

1778

Abstract

Purpose

This study aims to bring awareness to the developing of fault detection systems using the data collected from sensor devices/physical devices of various systems for predictive maintenance. Opportunities and challenges in developing anomaly detection algorithms for predictive maintenance and unexplored areas in this context are also discussed.

Design/methodology/approach

For conducting a systematic review on the state-of-the-art algorithms in fault detection for predictive maintenance, review papers from the years 2017–2021 available in the Scopus database were selected. A total of 93 papers were chosen. They are classified under electrical and electronics, civil and constructions, automobile, production and mechanical. In addition to this, the paper provides a detailed discussion of various fault-detection algorithms that can be categorised under supervised, semi-supervised, unsupervised learning and traditional statistical method along with an analysis of various forms of anomalies prevalent across different sectors of industry.

Findings

Based on the literature reviewed, seven propositions with a focus on the following areas are presented: need for a uniform framework while scaling the number of sensors; the need for identification of erroneous parameters; why there is a need for new algorithms based on unsupervised and semi-supervised learning; the importance of ensemble learning and data fusion algorithms; the necessity of automatic fault diagnostic systems; concerns about multiple fault detection; and cost-effective fault detection. These propositions shed light on the unsolved issues of predictive maintenance using fault detection algorithms. A novel architecture based on the methodologies and propositions gives more clarity for the reader to further explore in this area.

Originality/value

Papers for this study were selected from the Scopus database for predictive maintenance in the field of fault detection. Review papers published in this area deal only with methods used to detect anomalies, whereas this paper attempts to establish a link between different industrial domains and the methods used in each industry that uses fault detection for predictive maintenance.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 19 June 2019

Vahid Jaferian, Davood Toghraie, Farzad Pourfattah, Omid Ali Akbari and Pouyan Talebizadehsardari

The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode.

Abstract

Purpose

The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode.

Design/methodology/approach

The effect of microchannel walls geometry (trapezoidal, sinusoidal and stepped microchannels) on flow characteristics and also changing circular cross section to trapezoidal cross section in laminar flow at Reynolds numbers of 50, 100, 300 and 600 were investigated. In this study, two-phase water/Al2O3 nanofluid is simulated by the mixture model, and the effect of volume fraction of nanoparticles on performance evaluation criterion (PEC) is studied. The accuracy of obtained results was compared with the experimental and numerical results of other similar papers.

Findings

Results show that in flow at lower Reynolds numbers, sinusoidal walls create a pressure drop in pure water flow which improves heat transfer to obtain PEC < 1. However, in sinusoidal and stepped microchannel with higher Reynolds numbers, PEC > 1. Results showed that the stepped microchannel had higher pressure drop, better thermal performance and higher PEC than other microchannels.

Originality/value

Review of previous studies showed that existing papers have not compared and investigated nanofluid in a two-phase mode in inhomogeneous circular, stepped and sinusoidal cross and trapezoidal cross-sections by considering the effect of changing channel shape, which is the aim of the present paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Experiencing Persian Heritage
Type: Book
ISBN: 978-1-78754-813-8

Book part
Publication date: 6 September 2019

Vahid Ghasemi, Giacomo Del Chiappa and Antónia Correia

This chapter analyzes the concept of resident apathy toward heritage tourism and defines influences which underpin resident attitudes toward the development of tourism. It…

Abstract

This chapter analyzes the concept of resident apathy toward heritage tourism and defines influences which underpin resident attitudes toward the development of tourism. It discusses the existing literature on community participation in tourism, paying attention to residents’ behavior toward its development. Adopting an interdisciplinary approach, the chapter provides information on analyzing residents’ apathy and identifying the dimensions which shape it. The discussion favors operations which promote internal marketing and branding increase interest in tourism development, and foster conceptual frameworks to advance the subject.

Details

Experiencing Persian Heritage
Type: Book
ISBN: 978-1-78754-813-8

Keywords

1 – 10 of 13