Search results

1 – 10 of 11
Article
Publication date: 26 November 2021

Vahid Heydari, Zaker Bahreini and Majid Abdouss

The harsh environment of space, especially radiation of direct solar rays, can potentially raise the temperature of the spacecraft to harmful levels. Thermal control coatings…

Abstract

Purpose

The harsh environment of space, especially radiation of direct solar rays, can potentially raise the temperature of the spacecraft to harmful levels. Thermal control coatings (TCCs) fix the thermal condition of the spacecraft acceptable for its components. This is possible by diffusely reflecting all effective ultraviolet (UV), visible (VIS) and near infrared (IR) (NIR) wavelengths of solar radiation and emmition of IR energy. The most commonly used TCCs have used ZnO as a pigment, but absorption of the UV light by ZnO pigment can change the ideal condition of these TCCs. The aim of his study is the using the porous ZnO particles as pigment to prevent the UV absorption.

Design/methodology/approach

To enhance the efficiency of these coatings, in the present study, nano-porous zinc oxide particles were synthesized and used as pigments for white TCCs.

Findings

The results revealed that the proposed TCC (TPZ), Thermal control coating with porous ZnO had better reflection (scattering) and emittance properties in comparison with the coating using ZnO as a pigment (TZ coating); so this coating had a solar absorptance value equal to 0.141, whereas this value for TZ was 0.150. Furthermore, TPZ showed higher thermal emittance (0.937) in comparison with TZ (0.9). These changes were because of the improvement in the refractive index, shape and surface area of the pigments. The general trend of the scattering coefficients for the prepared coating, as calculated from the Kubelka–Munk equation, showed that scattering was more efficient in the UV region, as compared with the TCC containing ZnO pigments.

Originality/value

This type of pigment for the first time is evaluated in TCCs.

Details

Pigment & Resin Technology, vol. 52 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 May 2012

Ang Chai Im, Leonard Lu Tze Jian, Ooi Poh Kok, Suriani Yaakob, Ching Chin Guan, Ng Sha Shiong, Zainuriah Hassan, Haslan Abu Hassan and Mat Johar Abdullah

The purpose of this paper is to synthesize porous zinc oxide (ZnO) by means of strain etching/wet chemical etching method with the use of 0.5% of nitric acid (HNO3) etchant. The…

Abstract

Purpose

The purpose of this paper is to synthesize porous zinc oxide (ZnO) by means of strain etching/wet chemical etching method with the use of 0.5% of nitric acid (HNO3) etchant. The structural and surface morphological properties of the samples are accessed by using X‐ray diffraction (XRD) and scanning electron microscopy (SEM) characterization techniques.

Design/methodology/approach

ZnO samples used in this work were deposited on the p‐Si (111) substrates by using radio frequency (RF) sputtering technique. Wet chemical etching processes with the use of 0.5% HNO3 etchant was applied on these samples in order to obtain porous structure. The porous ZnO samples are characterized by means of XRD and SEM to access their structural and surface morphological properties.

Findings

The XRD and SEM cross‐sectional measurements revealed that the thickness of the etched ZnO thin films is proportional to the etching time. SEM micrographs show that the surface morphology of ZnO changes over etching time. On the other hand, XRD results indicate that the crystallite sizes of the ZnO(002) decreases when the etching time increases.

Originality/value

The paper shows how porous ZnO thin films have been successfully synthesized by using simple wet chemical etching. SEM images reveal that this method is reliable when producing porous structure ZnO surfaces.

Details

Microelectronics International, vol. 29 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 4 May 2020

Jayaraman Kathirvelan and Rajagopalan Vijayaraghavan

This work encompasses the various laboratory-based and portable methods evolved in recent times for sensitive and selective detection of ethylene for fruit-ripening application…

Abstract

Purpose

This work encompasses the various laboratory-based and portable methods evolved in recent times for sensitive and selective detection of ethylene for fruit-ripening application. The role of ethylene in natural and artificial fruit ripening and the associated health hazards are well known. So there is a growing need for ethylene detection. This paper aims to highlight potential methods developed for ethylene detection by various researchers, including ours. Intense efforts by various researchers have been on since 2014 for societal benefits.

Design/methodology/approach

The paper focuses on types of sensors, fabrication methods and signal conditioning circuits for ethylene detection in ppm levels for various applications. The authors have already designed, developed a laboratory-based set-up belonging to the electrochemical and optical methods for detection of ethylene.

Findings

The authors have developed a carbon nanotube (CNT)-based chemical sensor whose performance is higher than the reported sensor in terms of material, sensitivity and response, the sensor element being multi-walled carbon nanotube (MWCNT) in comparison to single-walled carbon nanotube (SWCNT). Also the authors have developed infrared (IR)-based physical sensor for the first time based on the strong IR absorption of ethylene at 10.6 µm. These methods have been compared with literature based on comparable parameters. The review highlights the potential possibilities for development of portable device for field applications.

Originality/value

The authors have reported new chemical and physical sensors for ethylene detection and quantification. It is demonstrated that it could be used for fruit-ripening applications A comparison of reported methods and potential opportunities is discussed.

Details

Sensor Review, vol. 40 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 February 2005

Olfat A. Fadali

To study the effect of rotation of a zinc/steel cylinder couple on the rate of galvanic corrosion in saline water and a saline water methyl alcohol system.

Abstract

Purpose

To study the effect of rotation of a zinc/steel cylinder couple on the rate of galvanic corrosion in saline water and a saline water methyl alcohol system.

Design/methodology/approach

The weight loss technique was used for calculating the rate of corrosion. variables such as cylinder rotational speed, salt concentration, alcohol volume percentage, and zinc/steel ratio were studied.

Findings

The relationship of turbulence and the rate of corrosion were found to fit the equation R=aRe 0.27. The presence of methyl alcohol in a saline water system decreased the rate of corrosion between 58 and 72 percent for a volume percentage of alcohol from 20 to 70 percent.

Originality/value

This paper explains the mechanism of galvanic corrosion for a zinc/steel cylinder couple in the turbulent region for saline water and saline water‐alcohol systems.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 October 2022

Ziyan Wang, Xueli Yang, Caixuan Sun, Hongyan Liu, Junkai Shao, Mengjie Wang, Junyi Dong, Guanlong Cao and Guofeng Pan

This paper aims to successfully synthesize three-dimensional spindle-like Au functionalized Co3O4-ZnO nanocomposites; characterize the structure, morphology and surface chemical…

Abstract

Purpose

This paper aims to successfully synthesize three-dimensional spindle-like Au functionalized Co3O4-ZnO nanocomposites; characterize the structure, morphology and surface chemical properties of the products; study the effect of Au NPs doping concentration, operating temperature different gas to, sensing properties; and introduce an attractive gas sensor for acetone detection.

Design/methodology/approach

Au NPs functionalized Co3O4-ZnO nanocomposite was prepared by coprecipitation and impregnation methods; the structure and surface chemical property of the products were characterized by XRD, SEM, TEM, UV-Vis, BET and XPS. The sensing ability of Au@Co3O4-ZnO for acetone and mechanism was analyzed systematically.

Findings

The results of gas sensing tests show that the unique component structure, Schottky junction and catalytic effect of Au functionalization make it have low operating temperature, excellent selectivity, high response (10 ppm, 56) and rapid response recovery time.

Research limitations/implications

All the characterization and test data of the prepared materials are provided in this paper and reveals the gas sensing mechanism of the gas sensor.

Practical implications

The detection limit is 2.92–100 ppb acetone. It is promising to be applied in low-power, micro detection and miniature acetone gas sensors.

Social implications

The gas sensor prepared has a lower working temperature and low detection limit, so it has promising application prospects in low-concentration acetone detection and early warning.

Originality/value

The unique component structure, Schottky junction and catalytic effect of Au functionalization Co3O4-ZnO make it have low operating temperature, excellent selectivity and rapid response recovery time.

Details

Sensor Review, vol. 42 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 October 2016

Li Bian, Meixia Li, Yiwei Lian, Yongjing Hao and Juan Xie

This paper aims to report a novel preparation method of ZnO particles with different structures and their photocatalytic activity.

88

Abstract

Purpose

This paper aims to report a novel preparation method of ZnO particles with different structures and their photocatalytic activity.

Design/methodology/approach

ZnO powders are prepared by a facile, economical and environment-friendly aqueous solution route. X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy and UV-vis diffuse reflectance spectra are used to characterize the products. Photocatalytic activity of the samples is evaluated by degradation of organic pollutant pentachlorophenol under UV-vis irradiation.

Findings

It is found that three-dimensional ZnO hierarchical structures can be prepared via aqueous solution route without using any template or structure-directing agent, and the alkalinity of reaction solution is the key factor. All the as-prepared ZnO products have good catalytic activity under UV-vis light irradiation.

Originality/value

This report presents a simple method for the preparation of ZnO particles with excellent photocatalytic activity. Experimental results could provide useful reference for the treatment of chlorophenols in the future.

Details

World Journal of Engineering, vol. 13 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 August 2010

Sharul Ashikin Kamaruddin, Mohd Zainizan Sahdan, Kah‐Yoong Chan, Mohamad Rusop and Hashim Saim

Zinc oxide (ZnO) is an emerging optoelectronic material due to its various functional behaviors. The purpose of this paper is to report on the fabrication and characterizations of…

Abstract

Purpose

Zinc oxide (ZnO) is an emerging optoelectronic material due to its various functional behaviors. The purpose of this paper is to report on the fabrication and characterizations of ZnO microrods.

Design/methodology/approach

ZnO microrods were synthesized using sol‐gel immerse technique on oxidized silicon (Si) substrates. The oxidized Si substrates were immersed in ZnO aqueous solution for different times ranging from three to five hours. The surface morphologies of the ZnO microrods were examined using scanning electron microscope (SEM). In order to investigate the structural properties, the ZnO microrods were measured using an X‐ray diffractometer (XRD). The optical properties were measured using a photoluminescence (PL) spectrophotometer.

Findings

Characterization from SEM shows an enhanced growth of the ZnO rods with increasing immerse time. XRD characterizations demonstrate sharp and narrow diffraction peaks peculiar to ZnO, which implies that the rod is of high crystallinity. Based on the PL spectra, long immerse time results in the high peak in the UV region.

Originality/value

This paper concludes that the immerse time exerts an influence on the ZnO microrods. A longer immerse duration is preferred in the fabrication of the ZnO microrod, which is considered an emerging material for many advanced electronic and optoelectronic applications.

Details

Microelectronics International, vol. 27 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 29 September 2023

Raj Shah, Nikhil Pai and Andreas Rosenkranz

This paper aims at analyzing the potential of new materials in magnesium-ion batteries (MIBs) with a particular focus on options for electrodes and electrolyte solutions while…

Abstract

Purpose

This paper aims at analyzing the potential of new materials in magnesium-ion batteries (MIBs) with a particular focus on options for electrodes and electrolyte solutions while also carefully considering the barriers to their entry in this application for MIBs, with a particular focus on the material options for electrodes and electrolyte solutions.

Design/methodology/approach

Potential materials for MIBs were examined for sustainability, safety and efficiency to develop the sustainable and well-working MIBs.

Findings

For anode materials, the use of Mg-bismuth alloys has shown promise, whereas Chevrel phases or layered molybdenum disulfide have potential as cathode materials. Potential electrolytes range from traditional materials to the development of tailored solid-state and liquid-based options.

Originality/value

This study considers the growing need for Mg-based ion batteries, as well as the need for suitable electrode and electrolyte materials and analyzes suitable options.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0081/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 September 2022

Murat Tunç, Hasan Gökkaya, Gökhan Sur and Ali Riza Motorcu

The purpose of the paper is to investigate photochemical machining characteristics of stainless steel (AISI 304-SS304) parts with a novel design are investigated experimentally…

Abstract

Purpose

The purpose of the paper is to investigate photochemical machining characteristics of stainless steel (AISI 304-SS304) parts with a novel design are investigated experimentally from the aspect of process parameters. The effects of phototool pattern geometry, ultraviole (UV) exposure time and etching time on of AISI 304 were evaluated.

Design/methodology/approach

The designed semi-automated photochemical manufacturing (PCM) equipment consists of 4 units, which include UV exposure, etching, developing and surface cleaning units. Experimental procedure has been designed via Taguchi method. Results were evaluated via Analysis of Variance (ANOVA) method.

Findings

Etching time is the most effective factor in PCM quality of AISI 304 stainless steel. Surface roughness is sensitive to geometrical pattern of the phototool for PCM of AISI 304 UV exposure time is less influential on the PCM quality for stainless steel.

Research limitations/implications

The designed PCM equipment prototype is not fully automated, which requires automation for part replacements into units. The effects of the temperature inside chemical processing units on process characteristics cannot be evaluated due to equipment limitations. The effects of surface cleaning time inside surface cleaning unit are not analyzed.

Originality/value

The utilized PCM equipment is semi-automated equipment, with which the process parameters such as etching time, surface cleaning time, UV exposure time and developing time can be controlled. Different from literature, the effects of phototool pattern geometries on the photochemical machining quality parameters are evaluated for the processing of AISI 304. The effects of processing parameters on dimensional accuracy, which is not common in the literature for AISI 304 stainless steel, are also evaluated.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 August 2022

Shireen Mohammed Abed, Sabah M. Mohammad, Zainuriah Hassan, Aminu Muhammad and Suvindraj Rajamanickam

The purpose of this study is to fabricate an ultraviolet (UV) metal-semiconductor-metal (MSM) photodetector based on zinc oxide nanorods (ZnO NRs) grown on seeded silicon (Si…

Abstract

Purpose

The purpose of this study is to fabricate an ultraviolet (UV) metal-semiconductor-metal (MSM) photodetector based on zinc oxide nanorods (ZnO NRs) grown on seeded silicon (Si) substrate that was prepared by a low-cost method (drop-casting technique).

Design/methodology/approach

The drop-casting method was used for the seed layer deposition, the hydrothermal method was used for the growth of ZnO NRs and subsequent fabrication of UV MSM photodetector was done using the direct current sputtering technique. The performance of the fabricated MSM devices was investigated by current–voltage (I–V) measurements. The photodetection mechanism of the fabricated device was discussed.

Findings

Semi-vertically high-density ZnO (NRs) were effectively produced with a preferential orientation along the (002) direction, and increased crystallinity is confirmed by X-ray diffraction analysis. Photoluminescence results show a high UV region. The fabricated MSM UV photodetector showed that the ZnO (NRs) MSM device has great stability over time, high photocurrent, good sensitivity and high responsivity under 365 nm wavelength illumination and 0 V, 1 V, 2 V and 3 V applied bias. The responsivity and sensitivity for the fabricated ZnO NRs UV photodetector are 0.015 A W-1, 0.383 A W-1, 1.290 A W-1 and 1.982 A W-1 and 15,030, 42.639, 100.173 and 334.029, respectively, under UV light (365 nm) illumination at (0 V, 1 V, 2 V and 3 V).

Originality/value

This paper uses the drop-casting technique and the hydrothermal method as simple and low-cost methods to fabricate and improve the ZnO NRs photodetector.

Details

Microelectronics International, vol. 40 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 11