Search results

1 – 10 of over 2000
Article
Publication date: 1 April 2024

Mahmoud Taban and Alireza Basohbat Novinzadeh

One of the challenges encountered in the design of guided projectiles is their prohibitive cost. To diminish it, an appropriate avenue many researchers have explored is the use of…

Abstract

Purpose

One of the challenges encountered in the design of guided projectiles is their prohibitive cost. To diminish it, an appropriate avenue many researchers have explored is the use of the non-actuator method for guiding the projectile to the target. In this method, biologically inspired by the flying concept of the single-winged seed, for instance, that of maple and ash trees, the projectile undergoes a helical motion to scan the region and meet the target in the descent phase. Indeed, the projectile is a decelerator device based on the autorotation flight while it attempts to resemble the seed’s motion using two wings of different spans. There exists a wealth of studies on the stability of the decelerators (e.g. the mono-wing, samara and pararotor), but all of them have assumed the body (exclusive of the wing) to be symmetric and paid no particular attention to the scanning quality of the region. In practice, however, the non-actuator-guided projectiles are asymmetric owing to the presence of detection sensors. This paper aims to present an analytical solution for stability analysis of asymmetric decelerators and apprise the effects of design parameters to improve the scanning quality.

Design/methodology/approach

The approach of this study is to develop a theoretical model consisting of Euler equations and apply a set of non-dimensionalized equations to reduce the number of involved parameters. The obtained governing equations are readily applicable to other decelerator devices, such as the mono-wing, samara and pararotor.

Findings

The results show that the stability of the body can be preserved under certain conditions. Moreover, pertinent conclusions are outlined on the sensitivity of flight behavior to the variation of design parameters.

Originality/value

The analytical solution and sensitivity analysis presented here can efficiently reduce the design cost of the asymmetric decelerator.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 March 2024

Cong Ding, Zhizhao Qiao and Zhongyu Piao

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Abstract

Purpose

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Design/methodology/approach

The hydrodynamic pressure lubrication models of the nontextured, V-shaped, circular and square microtextures are established. The corresponding oil film pressure distributions are explored. The friction and wear experiments are conducted on a rotating device. The effects of the microstructure shapes and sizes on the wear mechanisms are investigated via the friction coefficients and surface morphologies.

Findings

In comparison, the V-shaped microtexture has the largest oil film carrying capacity and the lowest friction coefficient. The wear mechanism of the V-shaped microtexture is dominated by abrasive and adhesive wear. The V-shaped microtexture has excellent wear resistance under a side length of 300 µm, an interval of 300 µm and a depth of 20 µm.

Originality/value

This study is conductive to the design of wear-resistant surfaces for friction components.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 March 2024

Hillal M. Elshehabey, Andaç Batur Çolak and Abdelraheem Aly

The purpose of this study is to adapt the incompressible smoothed particle hydrodynamics (ISPH) method with artificial intelligence to manage the physical problem of double…

Abstract

Purpose

The purpose of this study is to adapt the incompressible smoothed particle hydrodynamics (ISPH) method with artificial intelligence to manage the physical problem of double diffusion inside a porous L-shaped cavity including two fins.

Design/methodology/approach

The ISPH method solves the nondimensional governing equations of a physical model. The ISPH simulations are attained at different Frank–Kamenetskii number, Darcy number, coupled Soret/Dufour numbers, coupled Cattaneo–Christov heat/mass fluxes, thermal radiation parameter and nanoparticle parameter. An artificial neural network (ANN) is developed using a total of 243 data sets. The data set is optimized as 171 of the data sets were used for training the model, 36 for validation and 36 for the testing phase. The network model was trained using the Levenberg–Marquardt training algorithm.

Findings

The resulting simulations show how thermal radiation declines the temperature distribution and changes the contour of a heat capacity ratio. The temperature distribution is improved, and the velocity field is decreased by 36.77% when the coupled heat Cattaneo–Christov heat/mass fluxes are increased from 0 to 0.8. The temperature distribution is supported, and the concentration distribution is declined by an increase in Soret–Dufour numbers. A rise in Soret–Dufour numbers corresponds to a decreasing velocity field. The Frank–Kamenetskii number is useful for enhancing the velocity field and temperature distribution. A reduction in Darcy number causes a high porous struggle, which reduces nanofluid velocity and improves temperature and concentration distribution. An increase in nanoparticle concentration causes a high fluid suspension viscosity, which reduces the suspension’s velocity. With the help of the ANN, the obtained model accurately predicts the values of the Nusselt and Sherwood numbers.

Originality/value

A novel integration between the ISPH method and the ANN is adapted to handle the heat and mass transfer within a new L-shaped geometry with fins in the presence of several physical effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 January 2023

Jia Jia Chang, Zhi Jun Hu and Changxiu Liu

In this study, a dynamic contracting model is developed between a venture capitalist (VC) and an entrepreneur (EN) to explore the influence of asymmetric beliefs regarding…

Abstract

Purpose

In this study, a dynamic contracting model is developed between a venture capitalist (VC) and an entrepreneur (EN) to explore the influence of asymmetric beliefs regarding output-relevant parameters, agency conflicts and complementarity on the VC's posterior beliefs through the EN's unobservable effort choices to influence the optimal dynamic contract.

Design/methodology/approach

The authors construct the contracting model by incorporating the VC's effort, which is ignored in most studies. Using backward induction and a discrete-time approximation approach, the authors solve the continuous-time contract design problem, which evolves into a nonlinear ordinary differential equation (ODE).

Findings

The optimal equity share that the VC provides to the EN decreases over time. In accordance with the empirical evidence, the EN's optimistic beliefs regarding the project's profitability positively affect its equity share. However, the interactions between the optimal equity share, project risk and both partners' degrees of risk aversion are not monotonic. Moreover, the authors find that the optimal equity share increases with the degree of complementarity, which indicates that the EN is willing to cooperate with the VC. This study’s results also show that the optimal equity shares at each time are interdependent if the VC is risk-averse and independent if the VC is risk-neutral.

Research limitations/implications

In conclusion, the authors highlight two potential directions for future research. First, the authors only considered a single VC, whereas in practice, a risk project may be carried out by multiple VCs, and it is interesting to discuss how the degree of complementarity affects the number of VCs that ENs contract. Second, the authors may introduce jumps and consider more general multivariate stochastic volatility models for output dynamics and analyze the characteristics of the optimal contracts. Third, further research can deal with other forms of discretionary output functions concerning complementarity, such as Cobb–Douglas and constant elasticity of substitution (See Varian, 1992).

Social implications

The results of this study have several implications. First, it offers a novel approach to designing dynamic contracts that are specific and easy to operate. To improve the complicated venture investment situation and abate conflict between contractual parties, this study plays a good reference role. Second, the synergy effect proposed in this study provides a theoretical explanation for the executive compensation puzzle in economics, in which managers are often “rewarded for luck” (Bertrand and Mullainathan, 2001; Wu et al., 2018). This result indicates a realistic perspective on financing and establishing cooperative relationships, which enhances the efficiency of venture investment. Third, from an empirical standpoint, one can apply this framework to study research and development (R&D) problems.

Originality/value

First, the authors introduce asymmetric beliefs and Bayesian learning to study the dynamic contract design problem and discuss their effects on equity share. Second, the authors incorporate the VC's effort into the contracting problem, and analyze the synergistic effect of effort complementarity on the optimal dynamic contract.

Details

Kybernetes, vol. 53 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 February 2024

Julian Givi and Jeff Galak

The gift-giving literature has documented several cases in which givers and recipients do not see eye-to-eye in gift-giving decisions. To help integrate this considerable segment…

Abstract

Purpose

The gift-giving literature has documented several cases in which givers and recipients do not see eye-to-eye in gift-giving decisions. To help integrate this considerable segment of the gifting literature, this paper aims to develop a social norms-based framework for understanding and predicting giver-recipient asymmetries in gift selection.

Design/methodology/approach

Five experimental studies test the hypotheses. Participants in these studies evaluate gifts used in previous research, choose between gifts as either gift-givers or gift-recipients, and/or indicate their level of discomfort with choosing different kinds of gifts. The gifts vary in ways that allow the authors to test the social norms-based framework.

Findings

Gift-giving asymmetries tend to occur when one of the gifts under consideration is less descriptively, but not less injunctively, normative than the other. This theme holds for both asymmetries recorded in the gift-giving literature and novel ones. Indeed, the authors document new asymmetries in cases where the framework would expect asymmetries to occur and, providing critical support for the framework, the absence of asymmetries in cases where the framework would not expect asymmetries to emerge. Moreover, the authors explain these asymmetries, and lack thereof, using a mechanism that is novel to the literature on gift-giving mismatches: feelings of discomfort.

Research limitations/implications

This research has multiple theoretical implications for the literatures studying gift-giving and social norms. A limitation of this work is that it left some (secondary) predictions of its model untested. Future research could test some of these predictions.

Practical implications

Billions of dollars are spent on gifts each year, making gift-giving a research topic of great practical importance. In addition, the research offers suggestions to consumers giving gifts, consumers receiving gifts, as well as marketers.

Originality/value

The research is original in that it creates a novel framework that predicts both the presence and absence of gift-giving asymmetries, introduces a psychological mechanism to the literature on giver-recipient gift choice asymmetries, and unifies many of the mismatches previously documented in this literature.

Details

European Journal of Marketing, vol. 58 no. 4
Type: Research Article
ISSN: 0309-0566

Keywords

Article
Publication date: 20 February 2024

Ebrahem A. Algehyne

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across…

27

Abstract

Purpose

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across diverse engineering disciplines, including electronic cooling, solar technologies, nuclear reactor systems, heat exchangers and energy storage systems. Moreover, the reduction of entropy generation holds significant importance in engineering applications, as it contributes to enhancing thermal system performance. This study, a numerical investigation, aims to analyze entropy generation and natural convection flow in an inclined square enclosure filled with Ag–MgO/water and Ag–TiO2/water hybrid nanofluids under the influence of a magnetic field. The enclosure features heated slits along its bottom and left walls. Following the Boussinesq approximation, the convective flow arises from a horizontal temperature difference between the partially heated walls and the cold right wall.

Design/methodology/approach

The governing equations for laminar unsteady natural convection flow in a Newtonian, incompressible mixture is solved using a Marker-and-Cell-based finite difference method within a customized MATLAB code. The hybrid nanofluid’s effective thermal conductivity and viscosity are determined using spherical nanoparticle correlations.

Findings

The numerical investigations cover various parameters, including nanoparticle volume concentration, Hartmann number, Rayleigh number, heat source/sink effects and inclination angle. As the Hartmann and Rayleigh numbers increase, there is a significant enhancement in entropy generation. The average Nusselt number experiences a substantial increase at extremely high values of the Rayleigh number and inclination.

Practical implications

This numerical investigation explores advanced applications involving various combinations of influential parameters, different nanoparticles, enclosure inclinations and improved designs. The goal is to control fluid flow and enhance heat transfer rates to meet the demands of the Fourth Industrial Revolution.

Originality/value

In a 90° tilted enclosure, the addition of 5% hybrid nanoparticles to the base fluid resulted in a 17.139% increase in the heat transfer rate for Ag–MgO nanoparticles and a 16.4185% increase for Ag–TiO2 nanoparticles compared to the base fluid. It is observed that a 5% nanoparticle volume fraction results in an increased heat transfer rate, influenced by variations in both the Darcy and Rayleigh numbers. The study demonstrates that the Ag–MgO hybrid nanofluid exhibits superior heat transfer and fluid transport performance compared to the Ag–TiO2 hybrid nanofluid. The simulations pertain to the use of hybrid magnetic nanofluids in fuel cells, solar cavity receivers and the processing of electromagnetic nanomaterials in enclosed environments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 December 2022

Mohammad Fathi, Roya Amjadifard, Farshad Eshghi and Manoochehr Kelarestaghi

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs…

Abstract

Purpose

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs. Alongside designing more efficient solar panels, installing solar trackers and special circuitry for optimizing power delivery to the load according to a maximum power point tracking (MPPT) algorithm are other ways of increasing efficiency. However, it is critical for any efficiency increase to account for the power consumption of any amendments. Therefore, this paper aims to propose a novel tracker while using MPPT to boost the PV system's actual efficiency accounting for the involved costs.

Design/methodology/approach

The proposition is an experimental pneumatic dual-axis solar tracker using light-dependent resistor (LDR) sensors. Due to its embedded energy storage, the pneumatic tracker offers a low duty-cycle operation leading to tracking energy conservation, fewer maintenance needs and scalability potential. While MPPT assures maximum load power delivery, the solar PV's actual delivered power is calculated for the first time, accounting for the solar tracking and MPPT power costs.

Findings

The experiments' results show an increase of 37.6% in total and 35.3% in actual power production for the proposed solar tracking system compared to the fixed panel system, with an MPPT efficiency of 90%. Thus, the pneumatic tracking system offers low tracking-energy consumption and good actual power efficiency. Also, the newly proposed pneumatic stimulant can significantly simplify the tracking mechanism and benefit from several advantages that come along with it.

Originality/value

To the best of the authors’ knowledge, this work proposes, for the first time, a single-motor pneumatic dual-axis tracker with less implementation cost, less frequent operation switching and scalability potential, to be developed in future works. Also, the pneumatic proposal delivers high actual power efficiency for the first time to be addressed.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 March 2024

Atifa Kanwal, Ambreen A. Khan, Sadiq M. Sait and R. Ellahi

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid…

Abstract

Purpose

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid. This study aims to highlight the effects of varying density of particles in a fluid. The fluid flows through a wavy curved passage under an applied magnetic field. Heat transfer is discussed with variable thermal conductivity.

Design/methodology/approach

The mathematical model of the problem consists of coupled differential equations, simplified using stream functions. The results of the time flow rate for fluid and solid granules have been derived numerically.

Findings

The fluid and dust particle velocity profiles are being presented graphically to analyze the effects of density of solid particles, magnetohydrodynamics, curvature and slip parameters. Heat transfer analysis is also performed for magnetic parameter, density of dust particles, variable thermal conductivity, slip parameter and curvature. As the number of particles in the fluid increases, heat conduction becomes slow through the fluid. Increase in temperature distribution is noticed as variable thermal conductivity parameter grows. The discussion of variable thermal conductivity is of great concern as many biological treatments and optimization of thermal energy storage system’s performance require precise measurement of a heat transfer fluid’s thermal conductivity.

Originality/value

This study of heat transfer with inhomogeneous distribution of the particles in a fluid has not yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2024

Sreejesh S., Minas Kastanakis and Justin Paul

This study aims to examine the influence of two significant product labelling strategies (geographical indication [GI] vs country-of-origin [COO]) on shaping customer product…

Abstract

Purpose

This study aims to examine the influence of two significant product labelling strategies (geographical indication [GI] vs country-of-origin [COO]) on shaping customer product attitude and purchase likelihood, considering consumers’ ethnocentric and cosmopolitan tendencies. The authors also investigate the boundary conditions and intervening mechanisms to manage the adverse consumer product evaluations and present mitigating procedures which reinstate favourable product evaluations and purchase likelihood.

Design/methodology/approach

The collected data from these all these studies were analysed using ANOVA and mediation anlaysis. The study tests the proposed hypotheses using three follow-up experimental investigations.

Findings

The study found that GI (vs COO) labels have a more significant impact on customers’ product evaluation and likelihood of purchase and supported the dispositional effect of ethnocentric and cosmopolitan inclinations. Further, the results indicated that self-product congruence can efficiently regulate consumer dispositions. Also, the results confirmed the significant impact of product identification on influencing consumer attitudes.

Practical implications

The above-said insights add practical insights, particularly concerning product labelling. Also, the insights on product attitudes and purchase likelihood intricacies in the context of product labelling enable companies to comprehend better the significance of GI labels, COO labels and self-product congruence.

Originality/value

To the best of the authors’ knowledge, this is the first time a study has compared the role of two significant product labelling strategies (GI vs COO) in shaping customer product evaluations, confirmed its boundary conditions and shown how to transform them into helpful customer product outcomes.

Details

Journal of Consumer Marketing, vol. 41 no. 3
Type: Research Article
ISSN: 0736-3761

Keywords

Access

Year

Last month (2223)

Content type

Article (2223)
1 – 10 of over 2000