Search results

1 – 10 of over 7000
Article
Publication date: 1 March 2001

Wendi Arant and Leila Payne

Academic libraries have long desired one‐stop shopping for their customers and, in this electronic age, their customers are demanding it: a way to search from a single point at…

2441

Abstract

Academic libraries have long desired one‐stop shopping for their customers and, in this electronic age, their customers are demanding it: a way to search from a single point at any physical location, and retrieve information from the library catalog, citations from journal indexes, and full text information from electronic resources. Academic libraries have explored ways to provide this access, as have library vendors of electronic databases, indexes, and integrated online library systems. The various components for a universal common user interface are in use and available, but have yet to be combined into a single system interface, adaptable enough to include any electronic resource, yet still powerful and versatile enough to provide a powerful and expert search engine. This article discusses the integrated facets as well as the system components that should be built into the ideal electronic library interface, taking into account the information needs of everyone from the newest freshman to the most erudite scholar and their expectations with regard to access, functionality and personalization.

Details

Library Hi Tech, vol. 19 no. 1
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 1 February 1990

P. van Zee, K.G. Günther, R. Poleschinski and N. Roth

A new approach to programming and operating multi‐sensor systems in flexible assembly automation has been developed. The concepts and strategies are described together with its…

Abstract

A new approach to programming and operating multi‐sensor systems in flexible assembly automation has been developed. The concepts and strategies are described together with its application to a depalletising task.

Details

Assembly Automation, vol. 10 no. 2
Type: Research Article
ISSN: 0144-5154

Article
Publication date: 13 November 2018

Christian Koch, Geir Karsten Hansen and Kim Jacobsen

Digital practices of facility management (FM) are undergoing transformation. Several Nordic countries have ambitious hospital-building projects, driven by large public clients…

1539

Abstract

Purpose

Digital practices of facility management (FM) are undergoing transformation. Several Nordic countries have ambitious hospital-building projects, driven by large public clients with long-term experience of operating complex building campuses. There is thus an opportunity for creating state-of-the-art digital FM. This paper aims to investigate the role of digital FM in new hospital projects in Scandinavia.

Design/methodology/approach

Based on a literature review, a framework of understanding of digital FM in hospital operation is established. Two longitudinal cases are presented and analysed, one for a greenfield hospital and the other for an extension of an existing hospital.

Findings

The literature highlights the importance of integration between technical digitalization, competences, organization and management of digital FM. The projects are in different phases and represent quite advanced preparations for digital FM. State-of-the-art computer-aided FM systems are prepared before operation. External consultants are involved, posing a dilemma of in-house/outsourced human resources in the future digital FM operation.

Research limitations/implications

Two case studies provide insights, but they have limited generalizability.

Practical implications

The study underscores the importance of preparation of management, organization and competences for digitalization.

Originality/value

Documented research on building information modelling (BIM) integrations in FM is still scarce. This article adds to the few empirical studies in the area. The findings illustrate that real estate administrators investing in FM software for new hospital buildings face challenges of aligning BIM models from design and construction to the FM system.

Details

Facilities, vol. 37 no. 7/8
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 16 June 2022

Mohammad Sedigh Kohanpour and Gholamreza Imani

This study aims to investigate lattice Boltzmann (LB) simulation of the fluid flow and heat transfer characteristics of a heated porous elliptic cylinder in uniform flow based on…

Abstract

Purpose

This study aims to investigate lattice Boltzmann (LB) simulation of the fluid flow and heat transfer characteristics of a heated porous elliptic cylinder in uniform flow based on the two-domain scheme. In the present research, the effect of axis ratio (1 ≤ AR ≤ 2), Reynolds number (5 ≤ Re ≤ 40) and Darcy number (10−4Da ≤ 10−2) are studied.

Design/methodology/approach

To perform the LB simulation based on the two-domain scheme, the nonequilibrium extrapolation method is modified to model the heat transfer interfacial conditions required at the curved interface.

Findings

The results show that the axis ratio as well as Reynolds and Darcy numbers significantly affect the fluid flow and heat transfer characteristics of the porous elliptic cylinder. It is shown that for AR > 1, the phenomenon of detached recirculating zone occurs at much higher Darcy numbers compared with the case of the porous circular cylinder (AR = 1). The results show that the location of maximum temperature within the cylinder moves downstream when the Reynolds number, Darcy number and axis ratio increase. It is also concluded that the average Nusselt number of a porous elliptic cylinder is always lower than that of a porous circular cylinder.

Originality/value

The LB simulation of forced convection from a porous cylinder in uniform flow with a curved interface based on the two-domain scheme has not been studied yet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 September 2018

Hojjat Saberinejad, Ali Keshavarz, Mohammad Payandehdoost, Mohammad Reza Azmoodeh and Alireza Batooei

The purpose of this paper is to numerically investigate the heat transfer enhancement in a tube filled partially with porous media under non-uniform porosity distribution and…

Abstract

Purpose

The purpose of this paper is to numerically investigate the heat transfer enhancement in a tube filled partially with porous media under non-uniform porosity distribution and thermal dispersion effects. The optimum porous thickness ratio [R_(r,Nu)] for the heat transfer enhancement under these conditions with and without considering required pumping power is evaluated.

Design/methodology/approach

The local thermal non-equilibrium and Darcy–Brinkman–Forchheimer models are used to simulated thermal and flow fields in porous region. The tube wall and flow regime are assumed to be isothermal and laminar, respectively. The impacts of Darcy number (Da = 10-6 - 10-1) and inertia parameter (F = 0 − 2) on the Nusselt number and friction factor are studied for non-uniform porosity distribution.

Findings

First, the effect of Nusselt number indicates that there are two different behaviors with respect to uniform and non-uniform porosity for partially and fully filled porous pipe. Second, variable porosity in porous region has significant influence on the optimum thickness ratio with considering required pumping power. For negligible inertia term, it depends on the Darcy number, whereas it is 0.9 at F > 1. Third, the plug flow assumption cannot be valid even at lower Darcy number under non-uniform porosity, while this assumption is applicable at Da < 10-3 for constant porosity distribution in porous region.

Originality/value

According to the best knowledge of authors, the optimum porous thickness ratio for the heat transfer enhancement considering the pressure loss effects under variable porosity has not reported up to now. Also the plug flow assumption in such physics is not discussed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2015

Amir R. Khoei, R. Yasbolaghi and S.O.R. Biabanaki

In this paper, the polygonal-FEM technique is presented in modeling large deformation – large sliding contact on non-conformal meshes. The purpose of this paper is to present a…

Abstract

Purpose

In this paper, the polygonal-FEM technique is presented in modeling large deformation – large sliding contact on non-conformal meshes. The purpose of this paper is to present a new technique in modeling arbitrary interfaces and discontinuities for non-linear contact problems by capturing discontinuous deformations in elements cut by the contact surface in uniform non-conformal meshes.

Design/methodology/approach

The geometry of contact surface is used to produce various polygonal elements at the intersection of the interface with the regular FE mesh, in which the extra degrees-of-freedom are defined along the interface. The contact constraints are imposed between polygonal elements produced along the contact surface through the node-to-surface contact algorithm.

Findings

Numerical convergence analysis is carried out to study the convergence rate for various polygonal interpolation functions, including the Wachspress interpolation functions, the metric shape functions, the natural neighbor-based shape functions, and the mean value shape functions. Finally, numerical examples are solved to demonstrate the efficiency of proposed technique in modeling contact problems in large deformations.

Originality/value

A new technique is presented based on the polygonal-FEM technique in modeling arbitrary interfaces and discontinuities for non-linear contact problems by capturing discontinuous deformations in elements cut by the contact surface in uniform non-conformal meshes.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 December 2021

Alexander Idesman and Bikash Dey

The purpose of this paper is as follows: to significantly reduce the computation time (by a factor of 1,000 and more) compared to known numerical techniques for real-world…

Abstract

Purpose

The purpose of this paper is as follows: to significantly reduce the computation time (by a factor of 1,000 and more) compared to known numerical techniques for real-world problems with complex interfaces; and to simplify the solution by using trivial unfitted Cartesian meshes (no need in complicated mesh generators for complex geometry).

Design/methodology/approach

This study extends the recently developed optimal local truncation error method (OLTEM) for the Poisson equation with constant coefficients to a much more general case of discontinuous coefficients that can be applied to domains with different material properties (e.g. different inclusions, multi-material structural components, etc.). This study develops OLTEM using compact 9-point and 25-point stencils that are similar to those for linear and quadratic finite elements. In contrast to finite elements and other known numerical techniques for interface problems with conformed and unfitted meshes, OLTEM with 9-point and 25-point stencils and unfitted Cartesian meshes provides the 3-rd and 11-th order of accuracy for irregular interfaces, respectively; i.e. a huge increase in accuracy by eight orders for the new 'quadratic' elements compared to known techniques at similar computational costs. There are no unknowns on interfaces between different materials; the structure of the global discrete system is the same for homogeneous and heterogeneous materials (the difference in the values of the stencil coefficients). The calculation of the unknown stencil coefficients is based on the minimization of the local truncation error of the stencil equations and yields the optimal order of accuracy of OLTEM at a given stencil width. The numerical results with irregular interfaces show that at the same number of degrees of freedom, OLTEM with the 9-points stencils is even more accurate than the 4-th order finite elements; OLTEM with the 25-points stencils is much more accurate than the 7-th order finite elements with much wider stencils and conformed meshes.

Findings

The significant increase in accuracy for OLTEM by one order for 'linear' elements and by 8 orders for 'quadratic' elements compared to that for known techniques. This will lead to a huge reduction in the computation time for the problems with complex irregular interfaces. The use of trivial unfitted Cartesian meshes significantly simplifies the solution and reduces the time for the data preparation (no need in complicated mesh generators for complex geometry).

Originality/value

It has been never seen in the literature such a huge increase in accuracy for the proposed technique compared to existing methods. Due to a high accuracy, the proposed technique will allow the direct solution of multiscale problems without the scale separation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 1999

Kuo‐Tong Ma and Chin Pan

The present work is to investigate nucleate boiling heat transfer at high heat fluxes, which is characterized by the existence of macrolayer. Two‐region equations are proposed to…

Abstract

The present work is to investigate nucleate boiling heat transfer at high heat fluxes, which is characterized by the existence of macrolayer. Two‐region equations are proposed to simulate both thermo‐capillary driven flow in the liquid layer and heat conduction in the solid wall. The numerical simulation results can clearly describe the activities of several multi vorticies in the macrolayer. These vorticies and evaporation at the vapor‐liquid interface constitute a very efficient heat transfer mechanism to explain the high heat transfer coefficient of nucleate boiling heat transfer near CHF. This study also explores the flow pattern of macrolayer with a high conducting solid wall, e.g. copper, and hence the temperature is uniform at the liquid‐solid interface, and the heat fluxes and the evaporation coefficient are found to have significant effect on flow pattern in the liquid layer. Furthermore, a parameter “evaporation fraction” as well as “aspect ratio” is proposed as an index to investigate the thermo‐capillary driven flow system. The model prediction agrees reasonably well with the experimental data in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 October 2018

Benjamin Himmel, Dominik Rumschoettel and Wolfram Volk

Directly printing molten metal droplets on a build platform to create full dense metal parts is a promising additive manufacturing process. This study aims of to analyse the…

Abstract

Purpose

Directly printing molten metal droplets on a build platform to create full dense metal parts is a promising additive manufacturing process. This study aims of to analyse the effects of the thermal conditions on the resulting tensile properties of parts made from aluminium 4047A built in droplet-based metal printing.

Design/methodology/approach

A drop-on-demand print head with pneumatic actuation is used to eject droplets on a nickel sheet mounted on the heated build platform. Tensile specimens are machined from cuboid blocks built by successive droplet deposition and tested in a universal testing machine. The ultimate tensile strength, uniform elongation and yield strength are evaluated and presented. Micro-sections are taken from the printed blocks to examine the internal pores and the metal’s microstructure.

Findings

With an increase in the interface temperature the uniform elongation increases from 0.5 to 12%, while the yield strength decreases from 130 to 90 MPa. The ultimate tensile strength increases from 130 MPa to a maximum of 190 MPa at an interface temperature of 530º C and slightly falls for higher interface temperatures. Those values are in the same range as conventionally casted parts of the same alloy. The authors’ hypothesis is that the main effect responsible for the mechanical properties is the wetting of solid material by the liquid droplet and not remelting, as has been reported in literature.

Originality/value

To the best of the authors’ knowledge, this is the first time that mechanical properties of aluminium 4047A built by a droplet-based additive manufacturing process are published for different interface temperatures. It is also the first time that the main effect on mechanical properties is attributed to wetting instead of remelting.

Details

Rapid Prototyping Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 June 2015

Wenchao Zhou, Drew Loney, Andrei G. Fedorov, F. Levent Degertekin and David W. Rosen

– The aim of this paper is to advance the understanding of the droplet deposition process to better predict and control the manufacturing results for ink-jet deposition.

Abstract

Purpose

The aim of this paper is to advance the understanding of the droplet deposition process to better predict and control the manufacturing results for ink-jet deposition.

Design/methodology/approach

As material interface has both geometric and physical significance to manufacturing, the approach the authors take is to study the interface evolution during the material joining process in ink-jet deposition using a novel shape metric and a previously developed powerful simulation tool. This tool is an experimentally validated numerical solver based on the combination of the lattice Boltzmann method and the phase-field model that enabled efficient simulation of multiple-droplet interactions in three dimensions.

Findings

The underlying physics of two-droplet interaction is carefully examined, which provides deep insights into the effects of the printing conditions on the interface evolution of multiple-droplet interaction. By studying line printing, it is found that increasing impact velocity or decreasing fluid viscosity can reduce manufacturing time. For array printing, the authors have found the issue of air bubble entrapment that can lead to voids in the manufactured parts.

Research limitations/implications

The array of droplets impinges simultaneously, in contrast to most ink-jet printers. Sequential impingement of lines of droplet needs to be studied. Also, impingement on non-planar surfaces has not been investigated yet, but is important for additive manufacturing. Finally, it is recognized that the droplet hardening mechanisms need to be incorporated in the simulation tool to predict and control the final shape and size of the arbitrary features and manufacturing time for ink-jet deposition.

Practical implications

The research findings in this paper imply opportunities for optimization of printing conditions and print head design. Furthermore, if precise droplet control can be achieved, it may be possible to eliminate the need for leveling roller in the current commercial printers to save machine and manufacturing cost.

Originality/value

This work represents one of the first attempts for a systematic study of the interface dynamics of multiple-droplet interaction in ink-jet deposition enabled by the novel shape metric proposed in the paper and a previously developed numerical solver. The findings in this paper advanced the understanding of the droplet deposition process. The physics-based approach of analyzing the simulation results of the interface dynamics provides deep insights into how to predict and control the manufacturing relevant outcomes, and optimization of the deposition parameters is made possible under the same framework.

Details

Rapid Prototyping Journal, vol. 21 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 7000